
ludwig wilhelm wall

D E S I G N A N D S Y N T H E S I S O F D I G I TA L
M E C H A N I C A L M E TA M AT E R I A L S





D E S I G N A N D S Y N T H E S I S O F D I G I TA L M E C H A N I C A L
M E TA M AT E R I A L S

ludwig wilhelm wall

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in IT Systems Engineering

Human-Computer Interaction Group
Hasso Plattner Institute
University of Potsdam

October 2016



Ludwig Wilhelm Wall:
Design and Synthesis of Digital Mechanical Metamaterials
October 2016

advisor:
Prof. Dr. Patrick Baudisch
Alexandra Ion



A B S T R A C T

In this thesis, we explore how to create simple mechanical computers
as part of 3D-printed objects. We are building on 3D printed objects
that are subdivided into a regular 3D grid of cells, where each cell can
be configured individually. These structures have also been referred
to as metamaterials. We introduce a new type of cell that contains a
spring that can be loaded after fabrication and that stays loaded until
a mechanical impulse arrives at a specific side of the cell, defined as
its input "port". When the impulse arrives, the cell "triggers", i.e., the
spring discharges and produces an impulse at its output "port". Con-
catenating such cells therefore implements a digital signal. Through
forking or blocking such signals, we implement simple logic func-
tions. We call the resulting structures "digital metamaterials" and dis-
cuss the specifics of the underlying logical paradigm, such as the
absence of a clock and the resulting implications on concurrency.

The main value proposition of the resulting mechanisms is that
they allow implementing simple sense/process/actuate functionality
based on mechanics alone and without the electronics usually de-
ployed. This also allows our mechanisms to be fabricated using 3D
printers alone.

We present a system designed to allow users to design and fabri-
cate simple interactive objects. Its main component is a custom ed-
itor that allows users to model 3D objects, route signals through
them, and verify the correctness of "circuitry" by simulating the sig-
nal flow. Additionally, the editor automatically synthesizes cell pat-
terns that implement user-defined logic functions, and exports 3D-
printable files. Using this editor, we have created simple interactive
objects, including a door latch with combination lock.

v



Z U S A M M E N FA S S U N G

Diese Masterarbeit erforscht die Erstellung von einfachen mechanis-
chen Computern als Teil von 3D gedruckten Objekten. Wir verwen-
den 3D gedruckte Objekte die in ein regelmäßiges 3D Zellgitter un-
terteilt sind, wovon jede Zelle individuell konfiguriert werden kann.
Solche Strukturen sind auch als Metamaterialien bekannt. Wir führen
eine neue Art von Zellen ein, welche eine Feder enthält, die nach
der Fabrikation gespannt werden kann und dann so lange gespannt
bleibt, bis ein mechanischer Impuls an einer spezifischen, als "Ein-
gangsschnittstelle" definierten, Seite eintrifft. Wenn der Impuls ein-
tritt, "löst die Zelle aus", d.h., dass die Feder sich entlädt und an einer
anderen als "Ausgangsschnittstelle" definierten Seite einen neuen Im-
puls erzeugt. Verkettungen solcher Zellen implementieren daher ein
digitales Signal. Wir implementieren einfache logische Funktionen
mittels Signalspaltung und -blockierung. Wir nennen die resultieren-
den Strukturen "digitale Metamaterialien" und erörtern Details des
zugrundeliegenden logischen Paradigmas, wie das Fehlen eines Tak-
tsignals und der daraus resultierenden Auswirkungen auf Nebenläu-
figkeit.

Das Hauptnutzenversprechen der resultierenden Mechanismen ist,
dass sie es erlauben einfache Funktionalitäten von Sensoren, Prozes-
soren und Aktuatoren nur mittels Mechanik zu implementieren, ohne
die üblicherweise verwendete Elektronik. Das erlaubt die Fabrikation
unserer Mechanismen mittels eines 3D Druckers allein.

Wir präsentieren ein System, welches dazu ausgelegt ist, Nutzern
zu erlauben einfache interaktive Objekte zu entwerfen und anzufer-
tigen. Die Hauptkomponente des Systems ist ein anwendungsspezi-
fischer Editor, der Nutzern erlaubt 3D Objekte zu modellieren, Sig-
nale durch sie hindurch zu leiten, und die Korrektheit eingebauter
"Schaltkreise" zu überprüfen, in dem ihr Signalfluss simuliert wird.
Zusätzlich synthetisiert der Editor automatisch Zellanordnungen, die
nutzerspezifische logische Funktionen implementieren. Weiterhin er-
laubt der Editor den Export von Dateien die 3D gedruckt werden
können. Unter Verwendung des Editors haben wir einfache interak-
tive Objekte gebaut, unter anderem eine Türklinke mit eingebautem
Kombinationsschloss.

vi



A C K N O W L E D G M E N T S

First of all, I would like to express my sincere gratitude to my advisor
Prof. Dr. Patrick Baudisch for his guidance and vision regarding this
and previous projects and for giving me the continued chance to work
on relevant research during the last years of my studies.

Thank you Alexandra Ion for co-advising this thesis, enabling me
to focus on the most important aspects of the system and providing
me with insights beyond the scope of the project.

I thank Robert Kovacs for his competent assessment of the mechan-
ical solutions I envisioned and his encouragement.

I would like to thank Stefanie Müller for providing lasting expertise
on how to study and how to write research papers successfully.

I thank Johannes Filter for his help with the implementation of the
2D signals drawing tool.

I thank Anna Seufert for proofreading the thesis.

I would also like to thank the other members of the HCI chair for
their valuable feedback and insights and for giving me the oppor-
tunity to experience and to participate in other research projects as
well.

vii





C O N T E N T S

1 introduction 1

1.1 Digital mechanical metamaterials . . . . . . . . . . . . . 1

1.2 Computation in the mechanical domain . . . . . . . . . 3

1.3 Editor for metamaterials that integrate logic . . . . . . 4

2 walkthrough 7

2.1 Building the logic for a combination lock . . . . . . . . 8

2.2 Testing the logic and integration with the metamaterial
door handle . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 related work 15

3.1 Personal fabrication . . . . . . . . . . . . . . . . . . . . . 15

3.2 Designing the inside of objects . . . . . . . . . . . . . . 16

3.3 Mechanical metamaterials . . . . . . . . . . . . . . . . . 17

3.4 Mechanical signal transmission using bistable springs 17

3.5 Rod logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Automata and petri-nets . . . . . . . . . . . . . . . . . . 20

4 hardware and mechanics 21

4.1 Computation using impulses . . . . . . . . . . . . . . . 21

4.1.1 Avoiding the necessity to use inverters . . . . . 22

4.1.2 Clockless computation . . . . . . . . . . . . . . . 24

4.2 Traversing the grid . . . . . . . . . . . . . . . . . . . . . 24

4.3 Recharging . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Operational amplifiers . . . . . . . . . . . . . . . . . . . 28

4.5 Physical background of mechanical signal transmission
and energy storage . . . . . . . . . . . . . . . . . . . . . 29

4.5.1 Springs as energy storage . . . . . . . . . . . . . 29

4.5.2 Bistable spring design . . . . . . . . . . . . . . . 31

4.5.3 Spring parameterization . . . . . . . . . . . . . . 33

5 software 35

5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Manual signal and logic design . . . . . . . . . . . . . . 36

5.2.1 Drawing . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.2 Furcated signal paths . . . . . . . . . . . . . . . 38

5.2.3 Advanced brushes for creating logic: Circuit blocks 39

5.2.4 Undo/Redo . . . . . . . . . . . . . . . . . . . . . 41

5.3 Synthesizing logic . . . . . . . . . . . . . . . . . . . . . . 42

5.3.1 Cell based computation using rod logic concepts 43

5.3.2 Form and shape of logic cell arrangements . . . 45

5.3.3 Logic synthesis using truth tables . . . . . . . . 47

5.3.4 Generating geometry for 3D printing . . . . . . 47

5.4 Simulating logic circuits regarding timing assumptions 50

5.5 Modular system design . . . . . . . . . . . . . . . . . . 52

5.6 Underlying model . . . . . . . . . . . . . . . . . . . . . 53

ix



x contents

5.6.1 Finite state machines . . . . . . . . . . . . . . . . 53

5.6.2 Petri-nets . . . . . . . . . . . . . . . . . . . . . . . 55

5.7 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 conclusion and future work 59

6.1 Automatic furcation generation for 1:n signal connections 59

6.2 Suspension for logic cells . . . . . . . . . . . . . . . . . 60

6.3 Memory cells and user powered system clock . . . . . 61

bibliography 63



L I S T O F F I G U R E S

Figure 1 (a) The editor supports the user from the cre-
ation of the computation enabled object, over
testing the implemented logic, to (b) printing
the final 3D model. . . . . . . . . . . . . . . . . 2

Figure 2 (a) Usually, interactive mechanical systems are
controlled by electronics, causing a transition
from the mechanical domain to the electronic
domain. We propose (b) staying in the mechan-
ical domain by integrating signal transmission
and simple computation into the material. . . 2

Figure 3 (a) The user manually activates columns of cells,
which configures the lamp shade (b) to display
different lighting patterns. . . . . . . . . . . . . 3

Figure 4 The menu of the user interface of our editor.
Functions focussing on editing metamaterials
alone are folded down, e.g. the stiffness set-
tings. (a) The basic interaction modes of the
editor. (b) Brushes for logic cells of logic gate-
ways. (c) The export function for generating 3D
printable files. . . . . . . . . . . . . . . . . . . . 5

Figure 5 The physical object that is created from a trans-
mission cell in the editor. It is made up of a
frame (black) and a bistable spring (silver) and
transmits a signal to its output port after re-
ceiving a signal at the input port. . . . . . . . . 7

Figure 6 Editor UI: Users selected the add mode and
the simple transmission cell brush, both high-
lighted by a blue frame. Clicking on the grid
creates a single transmission cell. . . . . . . . . 8

Figure 7 (a) Users draw the signal routing using the sig-
nals mode of the editor. (b) Once they cross an
existing signal route, the editor automatically
draws a gate cell. (c) After creating all cells for
the digit evaluation, (d) users configure the ini-
tial states of the gate cells to define the key code. 9

Figure 8 (a) These lines of cells are charged. Triggering
the leftmost cells causes a chain reaction that
triggers all following cells, resulting in (b) a
line of uncharged cells. . . . . . . . . . . . . . . 9

xi



xii List of Figures

Figure 9 (a-b) The blocking cell on the left configures the
gate cell on the right. If the blocking cell is charged,
the signal of the gate cell can pass, otherwise
it is blocked. . . . . . . . . . . . . . . . . . . . . 10

Figure 10 Gate cells validate signals and can be config-
ured to block signals (c-d) or let signals pass
(a-b) in the tense state of the blocking cell. . . . 11

Figure 11 The finished prototype. Users can verify their
logic and signal routing. They first charge all
springs, then (a) they click the inputs to trigger
the signal there, and lastly (b) they trigger the
evaluation line and find that the signal passes
all the way through to the latch. . . . . . . . . . 11

Figure 12 The final door lock consists of 82 cells, which
implement the signal transmission, the evalu-
ation of each digit input by the user, an AND
gate, and one operational amplifier with a pre-
amplification step to move the blocking bolts
sufficiently far. . . . . . . . . . . . . . . . . . . . 12

Figure 13 The input function (a) is automatically mini-
mized and a cell pattern (b) is synthesized by
the editor. . . . . . . . . . . . . . . . . . . . . . . 13

Figure 14 Sauron [19] enables inserting a camera into an
opening after fabrication to increase the inter-
activity of the object, allowing it to be used as a
trackball mouse. Its movable parts are tracked
from within the object and the captured infor-
mation is processed to be used as mouse input. 16

Figure 15 (a) Printed Optics [25] integrates light pipes into
the model to (b) allow dynamic eye movements
of the figure and easily accessible touch input. 16

Figure 16 Deformations through Make It Stand [17] en-
able (a) the original horse model (b) to stand
on a single leg. (c) Voxels from the inside of
the T-Rex head have been removed (d) to al-
low the printed model to stand without support. 17

Figure 17 This machine made out of one piece of ma-
terial was created by Metamaterial Mechanisms
[7] and converts the rotational input of an axis
into a walking motion of its legs. . . . . . . . . 18



List of Figures xiii

Figure 18 In [18] a signal propagates through soft ma-
terial using chains of bistable springs. (a) In-
creasing the width dout decreases stiffness of
the output line of springs. (b) The stiffer setup
requires the force of both top inputs to acti-
vate, implementing an AND gate. (c) The softer
setup realizes an OR functionality since each of
the top inputs can activate the bottom output. 19

Figure 19 Rod logic knob positioning and blocking op-
eration [11]. The gate knob blocks the probe
knob and thus the movement of its rod in this
diagram. . . . . . . . . . . . . . . . . . . . . . . 20

Figure 20 An inverter is a common building part in elec-
tronic circuits which we cannot use in our sys-
tem. . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 21 0 and 1 signals switch places, thus inverting
their connotation. . . . . . . . . . . . . . . . . . 23

Figure 22 We created a setup that uses one additional in-
put to create inverted signals, since the unary
inverter is impossible to build. (a) The input A
has not been set. The output of the computa-
tion is A. (b) The input A has been set, and the
output of the computation is ¬A. . . . . . . . . 23

Figure 23 We use a new type of output port to redirect
the signal by 90°. We exploit the rotational move-
ment of the spring and attach a strut that hits
its neighboring cell. . . . . . . . . . . . . . . . . 25

Figure 24 (a) To route signals from one plane to another,
we redirect the signal by 90° and rotate the re-
ceiving cell. (b) Concatenating three redirect-
ing assemblies allows us to route signals in 3D. 25

Figure 25 We cross signals by running a crossbar across
another cell. . . . . . . . . . . . . . . . . . . . . 26

Figure 26 We can bifurcate signals (a) in a parallel man-
ner or (b) let the two signal run in opposite
directions. . . . . . . . . . . . . . . . . . . . . . 26

Figure 27 We use the opposite assembly to merge signal
as we did to bifurcate them. This implements
an OR gate. . . . . . . . . . . . . . . . . . . . . . 27

Figure 28 (a) The hook functions as a flexible bearing
around an axis at a cell edge, allowing rotation.
(b) A knob pushes the recharger up, out of sig-
nal line, while not in use. (c) Another knob fo-
cuses the pressure from above, creating a long
lever for the rotation. (d) These "teeth" push
the spring backward when rotated. . . . . . . . 27



xiv List of Figures

Figure 29 (a) All cells are in their relaxed state. (b) A
push from above charges the cells. (d) The bot-
tom knobs on the rechargers force them back
into their resting position. . . . . . . . . . . . . 28

Figure 30 This symmetric bistable system has two min-
ima (a) for potential energy, separated by a lo-
cal maxima (b). . . . . . . . . . . . . . . . . . . 30

Figure 31 The force-displacement diagram illustrates the
snapping behavior of the asymmetric bistable
springs. When pushed from the left, the spring
will snap after passing (b) to the position at (c).
When pushed from the right, it will snap from
(b) to the origin, while exerting a large output
force. . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 32 (a) The bistable mechanism is mounted in a
bearing to allow large rotations. (b) Angles be-
tween beams are minimized to avoid energy
loss due to bending when converting compres-
sion/tensile forces. (c) Pre-bent beam increases
compression/tensile forces further by increas-
ing its width when bent. . . . . . . . . . . . . . 32

Figure 33 The distance r between the two beams is mini-
mized if the angle between them is 180°, i.e. if
they run parallel, and if the gap g is zero. . . . 33

Figure 34 All of these parameters affect the spring con-
stant, but they have varying impact on stroke
length and output energy of the spring. . . . . 34

Figure 35 The system is intended to run on two PC’s.
PC1 handles user interaction, while PC2 works
as a server to avoid delays when using the sys-
tem. . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 36 Overview of the internal structure of our editor. 37

Figure 37 The signals mode offers a freeform drawing tool
that creates a signal line along the path of the
mouse cursor. . . . . . . . . . . . . . . . . . . . 37

Figure 38 (a) Users select the two blue cells, which are
then (b) automatically connected via the signals
tool. . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 39 Users want to connect the blue cell on the left
to all blue cells on the right, so that the right
ones are all activated at nearly the same time.
It requires less cells to do so when furcations
happen close to the larger set of cells, i.e. close
to the right end of the signal paths. . . . . . . . 39



List of Figures xv

Figure 40 Each of these gates has two inputs coming from
the top and an evaluation line coming from the
left. The output of the computation is located
at the (top) right. . . . . . . . . . . . . . . . . . 40

Figure 41 (a) Users can place this AND gate directly. (b)
Switching to the compute mode charges all cells.
(c) Users activate the first input. The second
gate cell still blocks the evaluation signal. (d)
Users activate the second input. (e) Users trig-
ger the evaluation line, which reaches the end,
since both inputs of the AND gate were acti-
vated. (f) Charging the cells also resets the state
of the gate cells. . . . . . . . . . . . . . . . . . . 41

Figure 42 Message sequence chart displaying undo and
one previous operation. . . . . . . . . . . . . . 42

Figure 43 All of the horizontal input lines have to have
the right states to block or unblock each of the
activation lines . . . . . . . . . . . . . . . . . . . 44

Figure 44 A logical OR can replace the physical version.
It reuses the evaluation line, that was originally
used to (a) trigger the parallel OR lines them-
selves. (b) It is forked a second time, and as a
result might (c) block its own signal path de-
pending on the result of the logic function. . . 45

Figure 45 A logical OR can replace the physical version.
It reuses the evaluation line, that was originally
used to trigger the parallel OR lines themselves. 46

Figure 46 (a) The violet and pink cells have been marked
as input cells. To fulfill the function, the pink
cells have to be triggered, but the violet ones
not. The yellow cell is an output cell. The user
has selected the first minterm of the function
here. (b) The user selects the second minterm
by marking the appropriate cells. (c) The cor-
responding logic has been generated. . . . . . 48

Figure 47 (a) shows a spring with a minimum material
thickness of 0,1mm and (b) was rendered with
a minimum material thickness of 0,3mm set.
The script adapts the geometry automatically
to avoid overlapping parts or unwanted trans-
lations. . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 48 To export STL files, the editor handles the user
interaction, i.e. request the output file name
and path from the user in a standard Windows
FileSaveDialog, then prepares and executes the
rendering script. . . . . . . . . . . . . . . . . . . 49



xvi List of Figures

Figure 49 The cells shining yellow are currently active
in this simulation. Multiple bifurcations have
triggered parallel signal lines. Simulating par-
allel execution helps identifying and testing race
conditions in prototypes. . . . . . . . . . . . . . 51

Figure 50 Triggering cells using a FIFO queue results in
a fixed ordering depending on the implemen-
tation. Here, the left path will always arrive first. 52

Figure 51 A customized OpenSCAD script creating the
frame and three script versions for creating a
bistable springs were used to render these 3D
designs. A modular system design allows ex-
changing them quickly. . . . . . . . . . . . . . . 53

Figure 52 (a) The state diagram for a simple transmitting
cell illustrates the two states of the cell/spring.
(b) Shows the corresponding state transition
table. . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 53 (a) Shows the internal FSM’s of the AND-Gate
automaton, but already abstracts from their in-
ternal states. (b) Takes the abstraction further,
hiding unnecessary details from the user. . . . 54

Figure 54 This petri-net shows an AND-gate. Transitions
model cells, so they can only fire if they have
a red Charged token. Blue logic tokens are not
consumed when evaluated, as the physical state
remains unchanged and other transitions may
evaluate them again. . . . . . . . . . . . . . . . 56

Figure 55 (a) The black parts of the voxel textures are
rendered blue to signify that the cell is charged.
(b) Active cells are rendered yellow instead.
(c) Uncharged cells are rendered without color
changes. . . . . . . . . . . . . . . . . . . . . . . 57

Figure 56 The suspension of the next version of our cell
frames allows the cells to shear and it enables
the system to place cells around curved surfaces. 60



acronyms xvii

Figure 57 Latch rods in [11] move in conjunction with
output rods, but are then locked in place by
gate knobs on a holding rod. The previously
calculated result of the system can be read through
the position of the latch rod in following calcu-
lations. . . . . . . . . . . . . . . . . . . . . . . . 61





1
I N T R O D U C T I O N

Personal fabrication machines, such as 3D printers, allow users to
make custom objects. The functionality of objects is often defined by
their external shape [Weichel]. To increase the functionality, static 3D
printed objects are often augmented with electronics [10].

Researchers recently started exploring 3D printing to alter objects
by designing their inside, e.g., to make them spin reliably or move
their center of gravity. Pushing this further, researchers created ob-
jects that consist internally of a large number of 3D cells arranged
on a regular grid. Since each cell is designed to perform a specific
deformation, objects that entirely consist of such cells literally offer
thousands of degrees of freedom. Such structures are also known as
metamaterials. These thematically related projects and their influence
on this thesis will be presented in chapter 3.

While metamaterials were initially understood as materials, resear-
chers recently proposed to think of them as machines [7]. Such meta-
material mechanisms consist of a single block of material, the cells of
which play together in a well-defined way in order to achieve macro-
scopic movement. In this thesis, we explore how to extend this con-
cept towards digital processing. We do so by combining metamate-
rial mechanisms with concepts from mechanical computers, as well
as mechanisms for signal propagation.

We present an editor for this kind of metamaterial and demon-
strate how it can be used to create a prototype of an entirely mechani-
cal door latch with integrated combination lock that might otherwise
have been implemented using sensors, actuators, and electronics. Fig-
ure 1 shows the editor and the printed design of the mechanical door
handle that was designed with it. The pins below the door handle are
used to input the code that unlocks the door handle, which is other-
wise fixed to its resting position. Chapter 2 demonstrates the creation
of this object using our editor.

1.1 digital mechanical metamaterials

Digital metamaterials are interactive objects based on a cell grid struc-
ture that contain mechanical signal propagation inside the object alone,
i.e., without sensors, actuators, and electronics. Custom cells allow
the device to select, decide, and compute and to send this informa-

1



2 introduction

Figure 1: (a) The editor supports the user from the creation of the
computation enabled object, over testing the implemented logic, to (b)

printing the final 3D model.

tion to other locations by means of transmission cells. Specialized
output cells can alter the properties of other metamaterials, such as
their permeability or their ability to shear. Other output options in-
clude acceleration of projectiles (e.g. a pinball) or locking traditional
mechanical parts in place.

These characteristics can be used to replace electronic parts in elec-
tromechanical objects where both input and output of the functional-
ity reside in the mechanical domain, and the computation is only a
small part of its function (cf. 2). This can sometimes circumvent the
need to adjust prototypes after fabrication, e.g. to add electronic parts,
completely.

Figure 2: (a) Usually, interactive mechanical systems are controlled by
electronics, causing a transition from the mechanical domain to the

electronic domain. We propose (b) staying in the mechanical domain by
integrating signal transmission and simple computation into the material.

Though the class of objects where our process is applicable is still
limited as of today, some useful objects can already be built with
our system. We created a lamp shade that can be configured to emit
light in a variety of patterns as seen in figure 3 and a plant pot that



1.2 computation in the mechanical domain 3

calculates its own density to provide more or less water depending
on the user input settings for plant size and water consumption.

Figure 3: (a) The user manually activates columns of cells, which
configures the lamp shade (b) to display different lighting patterns.

1.2 computation in the mechanical domain

This thesis introduces a system that fulfills basic mechanical and com-
putational problems in fabricated objects without leaving the mechan-
ical domain. It describes a novel type of metamaterial, the basic build-
ing block of which is a cell containing a bistable spring. This cell
serves both as energy storage to power the system, as well as a three-
state logic switch used to implement combinational logic. Similarly,
the mechanical signal we propose serves both as a medium carrying
information, as well as an energy source to actuate system outputs.
Details of the spring design and the physical foundations that enable
a reliable mechanical signal will be depicted in chapter 4. We employ
rod logic [11] to implement combinational logic based on the three-
state logic cells, as described in chapter 5.

As mentioned before, our system is applicable if the computation
part of the task is small. A large number of in- or outputs however
can be handled well. One example of a use case with many outputs
is changing the properties of an object, since every part of the object
may require a specialized output signal or force. Metamaterials theo-
retically maximize the number of such outputs, as every cell within
the object can be viewed as a separate part, and changing object prop-
erties becomes changing the properties of the material itself. Since the
actuators in our system are metamaterial cells themselves, they scale
in a similar fashion as the metamaterials they actuate. Our system
thus synergizes well with other types of metamaterial.



4 introduction

1.3 editor for metamaterials that integrate logic

Given the ability to print an object with functional mechanical com-
putation and actuation, it is still a very challenging task to create a
mechanical circuit that implements the desired logic and connects all
in- and outputs. This thesis therefore further presents an editor that
supports the user in creating digital mechanical metamaterials. Be-
sides a variety of tools intended to create metamaterial mechanisms
based on [7], the editor also offers instruments to help the user in
implementing combinational logic with digital mechanical metama-
terials. The base software already supports the user with tools like
a finite element analysis simulation that displays the expected defor-
mations of the material when forces are applied, to assist mechanism
design in metamaterials. Arranging signal lines in a 3D environment
is supported via intuitive drawing tools and pathfinding capabilities,
such as the add and signals modes in figure 4a. Predefined brushes to
place common circuitry directly, such as gates and multiplexers, and
a logic synthesizer assist in designing the computation (cf. figure 4b).

Details and implementation of editor features will be discussed in
chapter 5. Finally, the editor exports the digital representation of the
object to an OpenSCAD script, which in turn converts it to a printable
3D model. The editor user interface supports this via a simple button
click (cf. figure 4c).



1.3 editor for metamaterials that integrate logic 5

Figure 4: The menu of the user interface of our editor. Functions focussing
on editing metamaterials alone are folded down, e.g. the stiffness settings.
(a) The basic interaction modes of the editor. (b) Brushes for logic cells of
logic gateways. (c) The export function for generating 3D printable files.





2
WA L K T H R O U G H

The following walkthrough will introduce the functionality of the sys-
tem, by showing the process used to create the door handle in figure
1, while also explaining the operation of the resulting physical objects
that would be created by the editor. Demonstrating both in parallel
shall provide a better understanding of the overall system.

Both designing functional metamaterial mechanisms and circuit de-
sign are challenges in themselves. The editor presented in this thesis
is based on the voxel-based editor from Metamaterial Mechanisms [7].
This type of editing environment was chosen, since metamaterials
are based on cells, which are represented well by voxels. Voxels are
visualization elements in a volume, i.e. on a three dimensional grid.
We help users to create functional circuits while abstracting from and
making use of the rod logic computation paradigm (cf. section 3.5).
Building on the previous work, designing computational logic and
physical mechanisms can now be combined within one workflow.
Through that, changes and adaptions between those two commonly
separate tasks can be applied interactively, which can accelerate the
overall design process.

Figure 5: The physical object that is created from a transmission cell in the
editor. It is made up of a frame (black) and a bistable spring (silver) and
transmits a signal to its output port after receiving a signal at the input

port.

7



8 walkthrough

2.1 building the logic for a combination lock

The most basic mode of operation is placing, deleting or modifying
single cells by hand. To do so, users select an interaction mode, e.g.
the add mode used to add cells, and a type of cell to be added, which
functions as a brush for the chosen mode. The editor user interface is
shown in figure 6 and the physical object that would be created from
a single transmission cell can be seen in figure 5.

Figure 6: Editor UI: Users selected the add mode and the simple
transmission cell brush, both highlighted by a blue frame. Clicking on the

grid creates a single transmission cell.

Figure 7 illustrates how users create the computation part for the
door lock example from figure 1. (a) They first draw the signal line
that evaluates the upper 5 digits by dragging over the ground plane
using the signals mode. (b) Then, using the same mode, they draw
signals perpendicular to the first signal line. When the two signals
intersect, the editor automatically draws gate cells. (c) They do the
same for the lower row of digits. (d) Users configure the gate cells
using the configure mode, i.e., they change the initial state of 5 gate
cells from initially ’pass’ to ’block’, which implements the key code.

The line of transmission cells built in figure 7a creates a signal path,
because the in- and output ports of these cells are properly aligned.
Cells are considered charged if their bistable spring is in its second
stable state. A push on the input port of the cell causes the bistable
spring to rapidly return to its first stable state, thus triggering the cell



2.1 building the logic for a combination lock 9

Figure 7: (a) Users draw the signal routing using the signals mode of the
editor. (b) Once they cross an existing signal route, the editor automatically

draws a gate cell. (c) After creating all cells for the digit evaluation, (d)
users configure the initial states of the gate cells to define the key code.

and sending a mechanical impulse to the output port of the cell. This
causes a chain reaction in all following cells in line (cf. figure 8).

Figure 8: (a) These lines of cells are charged. Triggering the leftmost cells
causes a chain reaction that triggers all following cells, resulting in (b) a

line of uncharged cells.

Users start to draw gate cells in figure 7b-c. These cells can also
transmit signals as normal, but they offer an additional state in which



10 walkthrough

they physically block any signal that reaches the cell. This state is set
by adjacent transmission cells, called blocking cells. A row of gate cells
functions as an AND gate, as a signal can only reach the end of the
row, if all of the gate cells are configured to let the signal pass.

Figure 9: (a-b) The blocking cell on the left configures the gate cell on the
right. If the blocking cell is charged, the signal of the gate cell can pass,

otherwise it is blocked.

Figure 9 illustrates how a signal is blocked, while (a) shows the
editor view and (b) the printed result. When the cell on the left is
triggered, it moves a blocker in the way of a pushing extrusion of
the cell on the right. When the cell on the right is then activated, the
blocking rod is in the way of the pushing extrusion, preventing the
spring from reaching its relaxed position. The cell is prevented from
triggering, thus blocking the signal. However, if the left cell is still
charged, as shown in figure 10a, pushing extrusion and signal can
pass without issue.

In figure 7d, users set the combination of the lock, which is defined
by whether gate cells allow signal transmission before or after the
corresponding blocking cells have been triggerend. To achieve this on
a physical level, the position of the blocker on the blocking rod is
altered. It is set to initially block signals and only let them pass after
actuation in figure 10c-d. Other types of cells, such as bifurcation and
redirection cell, will be introduced in chapter 4. Section 4.1.1 explains
how arbitrary combinational logic can be implemented through sim-
ple signal blocking and section 5.3.1 describes how it is implemented
in our system.

2.2 testing the logic and integration with the metama-
terial door handle

Users continue building the prototype of the door handle by adding
a line of springs for the evaluation of the created logic, which ends
at the point where the metamaterial door handle itself will be built.
They add a specialized type of output cell, an operational amplifier, to



2.2 testing the logic and integration with the metamaterial door handle 11

Figure 10: Gate cells validate signals and can be configured to block signals
(c-d) or let signals pass (a-b) in the tense state of the blocking cell.

the end of that signal line. This operational amplifier is an enlarged
version of the transmission cell that takes up the space of eight cells
and offers a much larger movement of its spring. This large move-
ment is used to move bolts in or out of shearing cells of the door han-
dle, thus allowing it to move as intended or to be locked in place. To
activate this large cell, the signal is first pre-amplified, which means
that the signal is simply bifurcated right before the operational ampli-
fier is triggered. Users then build the actual metamaterial door han-
dle mechanism on top of the operational amplifier using the methods
presented in [7]. The editor result can be seen in figure 11 and the
printed result is shown in figure 12.

Figure 11: The finished prototype. Users can verify their logic and signal
routing. They first charge all springs, then (a) they click the inputs to

trigger the signal there, and lastly (b) they trigger the evaluation line and
find that the signal passes all the way through to the latch.



12 walkthrough

Figure 11 shows how users verify the signal transmission in our cus-
tom editor. They first charge the cells, which is visualized by turning
the signal lines blue. The cells are automatically charged whenever
users activate the compute mode of the editor. They trigger the inputs
and the evaluation signal, as they do on the 3D printed object, and
watch if the signal runs through to the door handle. If not, they see
where the signal stopped and can correct the error.

All the gate cells in 11b are green, meaning that they let a signal
pass through them, after the correct input code has been entered. In
the case of a combination lock, this should only be the case if the
exact combination of inputs was entered, though the order in which
it was entered is not important. The evaluation line however has to be
triggered last, as it evaluates the computation given the current state
of the system. This evaluation line therefore only unlocks the door if
the entire correct code was entered previous to its activation.

Figure 12: The final door lock consists of 82 cells, which implement the
signal transmission, the evaluation of each digit input by the user, an AND
gate, and one operational amplifier with a pre-amplification step to move

the blocking bolts sufficiently far.



2.2 testing the logic and integration with the metamaterial door handle 13

Users manually drew the logic that implements the combination
lock in the previous section. The editor however also provides the
functionality to synthesize these logic cells automatically. Different
methods for synthesis are available depending on in which form the
logic function is known to the user. These options and the logic syn-
thesis itself will be discussed further in section 5.3.

The first line of logic that evaluates the input digits for the door lock
in figure 7d is described by the function F0 = A & ¬B & ¬C & D & ¬E.
If and only if the bits A and D are set, the function returns true, open-
ing the lock. Users may input this function directly and let the editor
automatically synthesize the necessary cell patterns to fulfill the func-
tion.

Figure 13: The input function (a) is automatically minimized and a cell
pattern (b) is synthesized by the editor.

To acquire a 3D printable file, users simply have to use the export
button. The editor then runs a modular OpenSCAD script that au-
tomatically generates a .STL file from the voxel based model, which
can be used for 3D printing. The final printed prototype can be seen
in figure 12. Details of the export functionality will be discussed in
section 5.3.4.





3
R E L AT E D W O R K

This work is based on previous work in personal fabrication, mechan-
ical metamaterials and analog computers. The ideas of designing the
inside of objects to add specific functionality to existing models as
well as mechanical signal transmission in fabricated objects have been
explored before. Decentralized computation on a grid-like structure
relates to cellular automata, while the state-based nature of our cells
and the interplay of the cell patterns resemble finite automata and
related modeling techniques such as petri-nets.

3.1 personal fabrication

Personal fabrication machines such as 3D printers allow users to
make custom objects. Besides printing decorative objects, users often
create functional objects the functionality of which is determined by
their external shape [12, 24].

To fabricate mechanical assemblies, users can print the structural
parts from rigid plastic (e.g., links, axles, bearings, gears, etc.) and
assemble them to construct machines [2]. Such assemblies can also
be printed in one process [5]. To allow users to go beyond mechani-
cal systems made on their personal fabrication machines, researchers
proposed techniques to integrate sensors and microcontrollers into
objects. They range from (capacitive) position sensing [9, 23, 20] to
sensing light beams for detecting user interaction [25], to complex
systems like [19] integrating a camera to track markers. Figure 14

shows an example object with an integrated opening for adding a
camera, that converts it into a customized input device.

Printed optics have been added to the inside of an object to enhance
both its output and input capabilities in figure 15.

While image processing is not possible in mechanical systems, we
argue that simple mechanical information processing can be inte-
grated with a 3D printed object to alter its properties. To do so, the
internal structure of the 3D printed object is designed.

15



16 related work

Figure 14: Sauron [19] enables inserting a camera into an opening after
fabrication to increase the interactivity of the object, allowing it to be used
as a trackball mouse. Its movable parts are tracked from within the object

and the captured information is processed to be used as mouse input.

Figure 15: (a) Printed Optics [25] integrates light pipes into the model to (b)
allow dynamic eye movements of the figure and easily accessible touch

input.

3.2 designing the inside of objects

Researchers recently started to advance the possibilities of 3D printed
objects by designing their interior, allowing the created objects to spin
reliably [3] or adjust their center of gravity [17]. Both methods take
3D objects with detailed outer shapes and adjust their interior, in this
case by carving voxels out of it (figure 16), to add new functionality to
the original object. Other approaches discussed in the cited work are
to slightly alter the original shape of the object and to use different
types of material with different masses for specific voxels to adjust
the center of gravity further.

Treating the interior of an object as well-defined configurable cells
instead of voxels leads to metamaterials.



3.3 mechanical metamaterials 17

Figure 16: Deformations through Make It Stand [17] enable (a) the original
horse model (b) to stand on a single leg. (c) Voxels from the inside of the
T-Rex head have been removed (d) to allow the printed model to stand

without support.

3.3 mechanical metamaterials

Metamaterials are “artificial structures with mechanical properties
that are defined by their usually repetitive cell patterns, rather than
the material they are made of” [16]. Metamaterials consist of large
numbers of 3D cells organized on a regular grid. Since each cell can
be designed to deform in a specific way [22, 15], the degrees of free-
dom they offer is only limited by their number of cells.

Based on this concept, researchers have created objects with un-
usual behaviors, such as metamaterials that collapse abruptly when
compressed [13], that shrink in two dimensions upon one-dimensional
compression [6], or objects that arrange layers of varying stiffness (i.e.,
soft and hard cells) in order to emulate different materials, such as
leather or felt [4].

However, metamaterials are usually seen as materials as the name
suggests. Using cell structures with well defined deformations, re-
searchers created analogue machines (figure 17) entirely from meta-
materials, elevating the concept beyond the originally proposed un-
derstanding as a novel type of material [7].

Making use of the discrete states of bistable springs, this work ad-
vances the concept of metamaterials further.

3.4 mechanical signal transmission using bistable springs

This work builds on mechanical wave propagation using bistable
springs [14]. 3D printed bistable springs transmitting a mechanical
signal have been investigated by Raney et al. [18]. In their paper,
a chain of bistable springs, which are connected to each other via
a zigzag spring or a stiff member, transmits a mechanical signal in
conjunction. The length of the chain, i.e. the number of springs that
are simultaneously switching between two stable states during signal
transmission, varies from 2 to 18 springs depending on parameters
defining the stiffness of the springs. The force this chain of springs ex-
erts after activation varies depending on the spring parameters, and



18 related work

Figure 17: This machine made out of one piece of material was created by
Metamaterial Mechanisms [7] and converts the rotational input of an axis

into a walking motion of its legs.

different force levels are utilized to create basic gateways or diodes.
As output forces of the signals change during computation steps (fig-
ure 18), additional measures would have to be taken to scale compu-
tation by concatenating multiple steps.

This work proposes digital machines instead of analog ones, in
which the signal-transmitting cells are self-sufficient units, that can
fulfill computation without changes in their force level, thus promot-
ing scalability. The details of cell operation allowing digital signal
transmission will be discussed in chapter 4.

3.5 rod logic

The work [11] initially introduced the concept of rod logic, which de-
scribes a system of moving rods in which the position of the rods
encodes bits of information. The mechanical movements of the rods
encode digital information. It was intended to be used in nanoscale
devices, but the presented concepts can also be used in a larger setup
to allow computation within objects made through personal fabrica-
tion. This thesis builds on concepts of rod logic, but it uses lines of
independent cells instead of rods. A rod in their system can be in two
meaningful positions, named 1 and 0 here, and transition between
the two. The rods are to be constricted to one-dimensional movement
and have a spring at the end of the rod that pulls the rod from 0

towards the 1 position.

Along the rods, gate- and probe knobs are attached to it, which can
prevent the movement of the rod. Rods are aligned in layers. Rods
from the next layer are placed perpendicular to rods from the previ-



3.5 rod logic 19

Figure 18: In [18] a signal propagates through soft material using chains of
bistable springs. (a) Increasing the width dout decreases stiffness of the

output line of springs. (b) The stiffer setup requires the force of both top
inputs to activate, implementing an AND gate. (c) The softer setup realizes

an OR functionality since each of the top inputs can activate the bottom
output.

ous layer. The rods in the lower layer function as input to the layer
above. Probe knobs along a rod can collide with gate knobs along
perpendicular rods, thus preventing the movement of the rod and ef-
fectively setting the output of the rod to 0. Any rod can be thought
of as an AND-/NAND-combination of its perpendicular input rods,
since it can only move and therefore reach the 1 position if none of
the gate knobs of the perpendicular rods prevent its movement. De-
pending on the placement of the gate knob, the perpendicular rod
has to be in the 0 or 1 position to allow the original rod to move. This
realizes a form of inversion of inputs right at the position where the
value is used.

Computation that exceeds determining a single (or multiple) AND/-
NAND value happens in multiple stages. First, the initial input values
of the computation are set by driving the appropriate rods into their
1 positions. Then any number of rods can be evaluated in parallel
based on these inputs. Once these rods have reached their final posi-
tion, their positioning can be used as input for a different set of rods.
This process can be repeated as necessary. Once the result has been
read, the tension of the drive springs is released and all rods return
to their initial positions.



20 related work

Figure 19: Rod logic knob positioning and blocking operation [11]. The
gate knob blocks the probe knob and thus the movement of its rod in this

diagram.

3.6 automata and petri-nets

Cellular automata fulfill computation through localized state changes
within a system composed of a large number of cells [21]. Changes
cascading through the cells of a cellular automaton require discrete
steps of progressing time. A clocked timing is therefore inherent
to their computation, while this work assumes a simplified timing
where all changes affected by one cascade happen instantaneously
instead. The computational possibilities of the proposed clock-less
system will be depicted in chapter 5.

A different type of automata, communicating finite state machines
(FSM) [1], are used to model the behavior of the cells used in our
system. The modeling and application details of these FSM’s will be
discussed in section 5.6.1. Traditional FSM’s model the basic cells of
this system, and a hierarchical composition of the cells can be used
to model the behavior and thus the computed logic they implement.
Other modeling techniques such as petri-nets also model the behavior
of a system using discrete state transitions [8].



4
H A R D WA R E A N D M E C H A N I C S

The system presented in this thesis makes use of mechanical signal
propagation to compute logic in 3D printed objects. The following
chapter will depict mechanical challenges and our solutions that al-
low the signal transmission through 15mm cubic cells. hardware al-
ternatives that enable basic computation and actuation functionality
without the need for electronics within the object.

Our prototypes are printed from the commonly available filaments
ABS and PLA. Our cells are designed to be printed in an assembled
state. We proved the feasibility of this concept by printing 35mm sized
cells on the Dimension SST 1200es printer, that has the ability to print
soluble support material. The cells were functional after the support
material has chemically been removed from them. Later we printed
the parts of our prototypes separately: we printed the springs from
PLA using the Ultimaker 2+ 3D printer, and the frames that hold the
springs from ABS on our Dimension SST 1200es. The higher resolu-
tion of the Ultimaker 2+ printer allowed us to produce all prototypes
using 15mm cells.

4.1 computation using impulses

Using springs utilizing one-time activation to transmit signals im-
poses challenges onto the domain of what can be computed and
which methods can be used to do so. For example, no clock is present,
which restricts computational capabilities, e.g. loops within the pro-
gram are not possible; restricting the computation to combinational
logic. It is also not possible to create an inverter in our system, which
inverts a 0 to a 1. (Inverting a 1 to a 0 can implemented simply
through blocking the signal.)

These challenges are based on fundamental differences between
electric circuits and our mechanical computational. A ’signal’ within
our system is not an applied voltage, but an impulse, i.e. a mechani-
cal force within the object. This impulse changes the system state by
changing physical properties of material, such as the positioning of
objects. The impulse is assumed to happen in zero time, and therefore
only allows distinguishing between whether an impulse was received
at any point in time prior to now, or not.

21



22 hardware and mechanics

4.1.1 Avoiding the necessity to use inverters

The cells in our system have an internal power source, but they are
not connected to an external power supply. Triggering a cell, thus
creating a 1 in our system, requires an impulse. Not only is "not re-
ceiving a signal" indistinguishable from a dormant system, without
an initial impulse, no cell can physically be triggered. It is therefore
impossible to create a simple unary inverter within our system (cf.
figure 20). Combinational logic however can only be implemented if
a basic AND- or OR-gate, as well as a negation of a signal can be
achieved. We therefore use an alternative concept that utilizes three-
state logic, which effectively results in a binary inverter, to still be
able to compute logic.

Figure 20: An inverter is a common building part in electronic circuits
which we cannot use in our system.

There are two possibilities to deal with this issue without leaving
the mechanical domain. The first is a concept called dual rail logic,
in which all signals in the system are duplicated. It requires that all
decisions concerning signals have to be made explicit. If a button has
not been pushed, would normally imply a 0 signal. In dual rail logic
however, all input "buttons" become an input "switches", and users
have to explicitly set all inputs to either true or false. They trigger ei-
ther the "0-signal" or the "1-signal" and since the 0 in dual rail logic is
denoted by an explicit signal, in can easily be inverted, e.g. by switch-
ing the signals out, as shown in figure 21. We did not implement dual
rail logic due to the large overhead necessary to duplicate all signals
and adapt all other parts of the computation accordingly.

The second possibility is to integrate the inversion into logic func-
tions, e.g. by using a NOR instead of an OR, and using one secondary
computation step, including a new signal, for the evaluation of all
logic computations. Integrating the inversion into the function means
that we always only need one additional signal to evaluate all "0-
signals". The start of the computation is initiated by a new user input,
and this resulting new impulse is used to evaluate the whole logic
computation in our system. An "inverter" in our system is thus a logic



4.1 computation using impulses 23

Figure 21: 0 and 1 signals switch places, thus inverting their connotation.

building block with two inputs instead of one, as shown in figure 22.
This solution does not have a large overhead, as we always only need
to add one additional input, no matter how complicated the function
or the composition of functions is.

Figure 22: We created a setup that uses one additional input to create
inverted signals, since the unary inverter is impossible to build. (a) The

input A has not been set. The output of the computation is A. (b) The input
A has been set, and the output of the computation is ¬A.

The gate cells used to build this logic have two inputs and per-
form three-state logic, in which the third state is defined as ’high
impedance’. One of these inputs configures the cell, setting it to high
impedance or to let the second signal pass unaltered. The three possi-
ble values are therefore 1 or 0, as given by the second input signal, or
high impedance, as given by the first input signal. Since blocking is



24 hardware and mechanics

handled within each spring cell as mentioned before (cf. 4.2), all cells
within our system that store energy perform three-state logic cells.

4.1.2 Clockless computation

Our springs have to be recharged after using them, so we cannot
make use of a clocking signal, as it would have to be activated in
every clock cycle. We therefore cannot use a system clock as a method
of synchronization in our system. This is however not necessary for
simple calculations since we use a different property of our system
to overcome this challenge; the persistence of state changes in our
system.

The state of the system in an electric circuit is commonly lost af-
ter the electric current that powers the system is removed. Our sys-
tem instead implements a static system, due to the fact that once a
change has been made to the physical state of our system, it theoret-
ically stays in that state forever, unless an external force introduces
new changes. Since these physical changes are persistent, other parts
of the system can "read" this information at any time. For example,
once a blocker has been moved in front of a spring, it does not mat-
ter when the spring will be activated, the blocker will still be in the
same position, blocking the signal. We utilize this fact and apply a
simplified synchronization for our computations by assuming that
all inputs have been set before functions that use these inputs are
calculated. This assumption is valid due to the fact that computation
in our system starts with a separate new user input, as explained in
the previous section. Due to the high speed of the mechanical system
compared to that of user input, we further assume, that new user
input can only occur after the previous input has already been fully
handled.

Race conditions within operations can be resolved through the length
of signal lines in number of cells. Timing details on this level are ex-
plained in section 5.4.

4.2 traversing the grid

Realizing computation on a grid requires the ability not only to trans-
mit a signal from one cell to another, but also to maneuver around
the grid to be able to reach all cells, i.e. to change the direction of a
signal. Based on geometric necessities, blocking of cell signals is han-
dled within each cell. Redirection and duplication of signals however
is managed between cells. "Empty" cells, that is cells that do not have
a spring to store energy, create the necessary space for a previous cell



4.2 traversing the grid 25

to access other neighbors than the one directly in front of the cell.
This open space is then used to redirect and duplicate signals.

As shown in figure 23, we redirect a signal by 90° by adding a beam
to the arms of our bistable spring. This beam rotates with the arm of
the spring and transmits the impulse to the top right cell.

Figure 23: We use a new type of output port to redirect the signal by 90°.
We exploit the rotational movement of the spring and attach a strut that

hits its neighboring cell.

Figure 24 shows how we can route signal in 3 dimensions. By sim-
ply rotating the receiving cell, we can redirect signals from, e.g., the
x/y plane to the x/z plane, as shown in figure 24a. With one more
such redirection, we get to the y/z plane, as shown in figure 24b. This
allows us to route signals in 3 dimensions within a 3D printed object.

Figure 24: (a) To route signals from one plane to another, we redirect the
signal by 90° and rotate the receiving cell. (b) Concatenating three

redirecting assemblies allows us to route signals in 3D.

We can also route signals as to cross each other, as shown in figure
25. We attach a crossbar at the output port of the left cell that spans
across the middle cell and actuates the right cell.



26 hardware and mechanics

Figure 25: We cross signals by running a crossbar across another cell.

The previously explained three-state logic can terminate signals,
but splitting/duplicating signals must also be possible to enable com-
putation. To bifurcate signals, we exploit the fact that our bistable
springs require less energy to be triggered than they actually output.
Figure 26 shows two different cell types that bifurcate signals, for all
of them we trigger two cells from one. Depending on the require-
ments for the signal route, we can (a) trigger two parallel signal lines
while keeping the signal direction, or (b) trigger two signal lines in
opposite directions.

Figure 26: We can bifurcate signals (a) in a parallel manner or (b) let the
two signal run in opposite directions.

Inverting the process of bifurcation, i.e. two cells transmitting a
signal to the input side of one other cell, results in a physical imple-
mentation of an OR gate. This cell arrangement is shown in figure
27.

4.3 recharging

The springs in our system are printed in their relaxed state. Fused de-
position modeling 3D printers heat up thermoplastics during printing
and the heat relaxes the material while it becomes ductile thus print-
able. Therefor the form it is printed in is always the relaxed form.
This means they have to be charged before they can be used for sig-



4.3 recharging 27

Figure 27: We use the opposite assembly to merge signal as we did to
bifurcate them. This implements an OR gate.

nal transmission and calculation. They expend their energy storage
during use, so they have to be recharged each time users want to use
them again. Charging by hand would be tedious and most often im-
possible, once cells are hidden within the object. This work introduces
a recharging mechanism that uses a rotation around one of the cell
edges to transform a pushing motion from the top of the cell down-
wards into a pushing motion in the opposite direction of the signal
direction. Every cell has its own recharger, which is rotated in com-

Figure 28: (a) The hook functions as a flexible bearing around an axis at a
cell edge, allowing rotation. (b) A knob pushes the recharger up, out of
signal line, while not in use. (c) Another knob focuses the pressure from
above, creating a long lever for the rotation. (d) These "teeth" push the

spring backward when rotated.

pliance to the rotation of the cell. The recharger requires a push from
above the cell to work, regardless of the Z-rotation of the cell. That
means that all cells on one plane (even multiple layers parallel to the
plane) can be charged with one motion.

Two pushes are sufficient to build objects with outputs in all six
possible directions of the cubic cells. To achieve this, all outputs in the
X and Y directions can be fulfilled by cells which roofs point upwards.
All other outputs, i.e. in the Z direction, can be acted out by cells the
roofs of which point sideways, while all of those cells agree on one
side.



28 hardware and mechanics

Figure 29: (a) All cells are in their relaxed state. (b) A push from above
charges the cells. (d) The bottom knobs on the rechargers force them back

into their resting position.

4.4 operational amplifiers

As will be explained in section 4.5.1, to enable signal transmission, the
energy output of every cell always has to be at least slightly bigger
than the required energy input Ei necessary to activate the following
cell. Thus the energy output Eo is Eo = Ei + ε with ε > 0. Depending
on the size of ε, this fact can be used to have a cell activate a more
powerful cell. This stronger cell can then in turn activate another even
stronger cell, realizing cascading operational amplifiers. The current
Eo increases in each step of this process, and the growth factor is
limited by ε. Assuming the energy efficiency of cells is unchanged or
greater when increasing cell size, the growth factor is at least constant,
resulting in at least polynomial growth.

Eo,n+1 = Eo,n ∗ (1 + F(ε))n (1)

Such escalating cascades can be utilized to achieve a very strong
output signal while the input signal stays minuscule in comparison.
Our system relies on operational amplifier cells that are eight times
as big as the previous cell level (twice the length/width/height of
the cubic cells). Bigger cells can also achieve a longer stroke, thus not
only increasing the output energy but also directly the motion range
of the output. Though it is possible to activate even such a signifi-
cantly bigger cell with a single cell of previous size with out system,



4.5 physical background of mechanical signal transmission and energy storage 29

this requires the input energy to be applied fairly centrally to the op-
erational amplifier cell. To ensure an even distribution, though one
of the smaller cells only covers a quarter of a side area of a bigger
cell, we bifurcate the activation signal once right in front of the oper-
ational amplifier cell and thus cover two quarters of the operational
amplifier cell input side, which is sufficient for a reliable activation.

4.5 physical background of mechanical signal trans-
mission and energy storage

Transmitting a signal through material requires energy. We argue that
mechanical signal transmission and storage can be a serviceable alter-
native to electronics in the context of home fabrication, as all com-
monly used building materials in this context are non-conductive
thermoplastics.

Similar to ohmic resistance in electronics, friction limits how far a
mechanical signal fed from one energy source can travel and fan-out.
We therefore utilize cells that store power themselves and can dis-
charge it to trigger at least two other cells. Friction then only has to
be resolved on a local level, as the supply of energy is replenished
at every activation of a cell. This theoretically allows scaling the sys-
tem infinitely. Triggering two adjacent cells per activation allows a
quadratic chain reaction, also known as fan-out of two. Such a re-
action can quickly activate the system as a whole if desired. User
interaction can therefore be as simple as a single push of a button to
activate the entire system.

4.5.1 Springs as energy storage

We use loaded bistable springs to store energy. A requirement for
such a designs is, that the stored energy Es is bigger than twice the
energy necessary to trigger another spring cell Et after the reduction
through environmental effects such as friction µ has been applied to
it.

Es > (2 ∗ Et) ∗ µ (2)

We explored a number of designs where a loaded spring was held
in position by a latch. We found however that the increased complex-
ity from having two moving parts per cell was not well suited for
creating cells intended for scaling down well. Instead, we employed
bistable springs as a design alternative. They combine the functional-



30 hardware and mechanics

ity of the spring and the latch in one part, thus reducing the number
of necessary moving parts.

Figure 30: This symmetric bistable system has two minima (a) for potential
energy, separated by a local maxima (b).

Bistable systems are characterized by having two minima for po-
tential energy, separated by a local maximum (cf. figure 30). Once
enough energy has been spent to pass the local maximum, the sys-
tem transitions from one stable state to the other stable state. This
can be visualized by imagining a credit card, which is being held and
pushed from two opposing edges, until in buckles to one side or the
other. If enough force is exerted onto the buckled surface of the card,
the direction of buckling will change rapidly. This movement is rapid
because once the local maximum of potential energy has been tra-
versed, the card will convert this potential energy into kinetic energy
and accelerate, until the second minima is reached. A clamped credit
card is a symmetric system.

Figure 31: The force-displacement diagram illustrates the snapping
behavior of the asymmetric bistable springs. When pushed from the left,
the spring will snap after passing (b) to the position at (c). When pushed
from the right, it will snap from (b) to the origin, while exerting a large

output force.



4.5 physical background of mechanical signal transmission and energy storage 31

For energy storage and rapid dispensing at a later time, an asym-
metric system is more attractive. An asymmetric bistable system still
has two minima of potential energy separated by a local maximum.
However one of these states has a much higher potential energy well
than the other, which has a value of zero in our case, as this is the
state the spring was printed in. The force-displacement diagram in
figure 31 illustrates this. For the purposes of this thesis, the state with
low potential energy is called "relaxed state". This state is represented
by the origin position of the diagram. Both displacement and reaction
force of the spring are 0, since this is the position it was printed in. If
the spring is pushed until the position b, it will snap to the c position
by itself. This c position is the second stable state, with high potential
energy, and is called "charged state". The area under the curve to the
right ob the b position is the energy necessary to trigger the spring.
Triggering it means that it will snap back to the origin of the diagram
and exert output energy equivalent to the area under the curve to the
left of the b position. It is beneficial to place cells and their bistable
springs in a way that a currently triggering cell spring will hit the
following charged spring in the b position of the snapping process.
The force emitted by the spring is biggest at that point, maximizing
the impulse that is transmitted to the next spring.

4.5.2 Bistable spring design

Simple bistable springs are designed as a simple buckled beam con-
strained by the surrounding walls. Such designs however usually
have a very high width to length ratio, which does not utilize the
space within a cubic cell well; hindering minimization. The ability of
the material to withstand stress is another limiting factor for miniatur-
ization. A stiff bistable spring introduces high stress into the mecha-
nism when it is forced into its second stable state. The thickness of the
spring is a crucial factor to control its stiffness. 3D printing only offers
a limited minimum material thickness. The presented clamped spring
design lowers the stiffness of the spring compared to a clamped buck-
led beam by increasing the length of the spring while better utilizing
the available space within a cubic cell. It further offers a longer stroke,
that is a longer total movement of the middle of the spring, than a
simple buckled beam.

If a spring is deformed, an elastic force acts to return the spring to
its relaxed form. A clamped spring becomes bistable if the clamping
force exerted by the surrounding walls exceeds the elastic force of
the spring at that displacement. The presented design was chosen to
facilitate this circumstance by increasing compression forces against
the walls and along the length of the members of the spring. Doing
so lowers the extent of internal deformations for the spring to reach



32 hardware and mechanics

its bistable state. If the deformations become to large, they become
plastic instead of elastic deformations, thus permanently damaging
the spring.

Figure 32: (a) The bistable mechanism is mounted in a bearing to allow
large rotations. (b) Angles between beams are minimized to avoid energy

loss due to bending when converting compression/tensile forces. (c)
Pre-bent beam increases compression/tensile forces further by increasing

its width when bent.

The attachment of the spring to the outer walls of the cell, shown in
figure 32a, has to permit large rotational motions while avoiding large
deformations of the material. This can be achieved using a bearing
mount, which allows rotation without bending, unlike a living hinge.

The secondary beams holding the pre-bent beam in the middle are
angled at 180° to each other (cf. 32b) to facilitate transmission of com-
pression forces to the walls. When the mechanism is pushed in, the
beams connected to the bearing cylinders rotate around the bearing
axles and their tips converge. The middle part of the mechanism tries
to resist the necessary deformations that allow the tips to converge,
thus pushing the outer beams holding it outwards against the walls.

The distance r between the two beams is given by g + l ∗ sin(α).
The resulting torque is:

Mr = F ∗ r ∗ sin(α) (3)



4.5 physical background of mechanical signal transmission and energy storage 33

Figure 33: The distance r between the two beams is minimized if the angle
between them is 180°, i.e. if they run parallel, and if the gap g is zero.

And the translational moment is defined by:

Mt = F ∗ r ∗ cos(α) (4)

A high torque would promote bending of the beams. A large trans-
lational moment however compresses the beam along its length, which
does not result in large deformations. Choosing a 180° angle and the
smallest possible gap between the two beams minimizes the resulting
torque, thus converting compression/tensional forces most efficiently.

Similar to the simple buckled beams commonly used for bistable
mechanisms from, the pre-bent beam, called bridge, in the middle of
the mechanism in figure 32c bends in a direction opposite to the in-
fluencing force. This effectively straightens the bridge when pushed
through to the second stable state of the spring. Since the bridge is
already printed pre-bent, this widens the beam. The additional width
increases compression within the bridge and tension in the connected
beams accordingly. Choosing an inverse buckling curvature with an
amplitude identical to the one that would be reached in the second
stable state of the mechanism maximizes the increase in compression
force. Additionally, increasing the thickness of the middle bridge im-
pedes bending on this part of the mechanism, hence forcing the other
beams to bend more. This can be utilized to substitute large (plas-
tic) deformations in this part of the mechanism with smaller (elastic)
deformations throughout the mechanism.

4.5.3 Spring parameterization

Depending on the use case, different qualities of bistable springs can
be desirable. Sometimes it might be necessary to employ a spring
that has a very long stroke, i.e. a very long distance between its two
stable states, for example to move output actuators over a longer dis-
tance. The parameters of our spring design can be altered to achieve
different qualities without losing its bistability. We defined three pa-
rameters: the arm angle, the length of the bent bridge in the middle,
and the strength of the bridge, varied trough changing its buckling



34 hardware and mechanics

magnitude and its thickness concurrently. Figure 34 visualizes these
parameters. We do not alter the cell size and we do not change pa-
rameters that are fixed due to environmental circumstances such as
resolution of the used printer. This means that these parameters can
be changed without the need to make changes to the overall setup,
such as using a new printer.

Figure 34: All of these parameters affect the spring constant, but they have
varying impact on stroke length and output energy of the spring.

We tested the effects of these parameters empirically and found
that the output energy of the spring is affected most by the strength
of the bridge and least by the arm angle. In turn, the stroke length
is affected most by the arm angle and least by the strength of the
bridge. The parameters can also be varied, for example, to increases
the fault-tolerance of the system with regards to unwanted activation,
e.g., by dropping the object. This can be done by increasing any of
the parameters slightly, since all of them increase the spring constant,
thus stiffening the system.



5
S O F T WA R E

We extended an interactive editor for the creation of metamaterial
mechanisms, which was first introduced by [7]. The previous editor
version allows placing voxels on the 3D grid, simulates deformations
of metamaterials, and employs custom shader code for better render-
ing performance. The enhanced version features the combination of
analog mechanisms and digital computation within the same envi-
ronment. We added functionality that allows drawing logic by hand,
as well as automated synthesis of logic cells. It supports the user in
the creation and layout of functional mechanical circuitry through
simulation and visualization of the computations. It furthermore pro-
vides features that simplify connecting the digital and analogue mech-
anisms through pathfinding and automated alignment and crossing
of signal transmission cells.

The editor is based on a node.js1 javascript framework and uses the
three.js2 graphics framework for rendering basic geometries. Custom
WebGL 2

3 shaders are used to render all voxels quickly directly on
the graphics processing unit (GPU).

After depicting the overall architecture of the software system, this
chapter will first explain the tools that the editor offers in more detail
than before, and then expose implementation specifics of different
parts of the software.

5.1 architecture

The software system is composed of a voxel based editor and three
separate external components, which handle minimization of logic
functions, 3D rendering after the export, and model deformation sim-
ulation through finite element analysis. Figure 35 shows the network
setup. The finite element analysis works as described in [7], by em-
ploying the finite element solver karamba4, which is a plugin for
Rhinoceros/Grasshopper. The functionality of the Python server re-
sponsible for logic minimization will be discussed in section 5.3. 3D
rendering in OpenSCAD for the export function is explained in sec-
tion 5.3.4.

1 https://nodejs.org/en/docs/es6/
2 https://github.com/mrdoob/three.js/
3 https://www.khronos.org/webgl/
4 http://www.karamba3d.com/

35



36 software

Figure 35: The system is intended to run on two PC’s. PC1 handles user
interaction, while PC2 works as a server to avoid delays when using the

system.

The structure diagram in figure 36 shows the main components of
the editor, while omitting details to focus on the parts storing and
rendering logic cells. A voxel in our system is a visible entity on the
grid used to construct metamaterial models. A logic cell on the other
hand is merely a data construct. When built, every logic cell creates
a voxel specific to the details of the cell as a visual representation for
the user of the editor.

The geometry buffer prepares the voxel geometries for rendering
directly on the GPU using a custom shader defined by the buffer.
Rendering details are explained in section 5.7.

5.2 manual signal and logic design

We implemented a set of specialized tools to help the users of our
editor in the creation of digital mechanical metamaterials. A common
task for doing so is connecting existing parts of models with each
other or in- and outputs of the object with the computation parts.
Depending on how complex the model already is, this might require
drawing long and constricted signal paths. The following drawing
tools simplify the task of drawing continuous signal lines.

5.2.1 Drawing

The basic add mode of the editor allows the user to add single voxels,
lines and even volumes of voxels quickly. Since all of the created



5.2 manual signal and logic design 37

Figure 36: Overview of the internal structure of our editor.

voxels are identical, this can be used to draw straight signal lines in
one motion. For signal lines that are not straight, we provide other
drawing tools instead.

Figure 37: The signals mode offers a freeform drawing tool that creates a
signal line along the path of the mouse cursor.

The editor offers the signals mode, which places logic cells accord-
ing to the movements of the mouse pointer, as long as the left mouse
button is pushed (cf. figure 37a). It therefor functions as a freeform
line tool, and the cells that were placed along the line transmit a sig-
nal from the start point of the mouse click until the point where the
user stopped pushing the button. The tool also adjusts existing cells,
when the drawn line intersects existing signal lines. If the user stops



38 software

drawing at the intersection of the lines, this is interpreted as the new
line blocking/unblocking the existing signal, thus creating a gate cell
at the intersection, as shown in figure 37b. Figure 37c shows the user
continuing to draw beyond the intersection of the two signal lines.
This interaction is instead interpreted as signal crossing, and the gate
cell is automatically replaced by a crossing cell. This version of the
signals tool however only works in 2D, on one XY-layer of the grid.

The signals mode of the editor offers an alternative way to draw
signal lines that also works in 3D. This alternate way of drawing is
activated by holding the CTRL button while selecting voxels. It con-
nects two cells via the shortest path automatically while making sure
that the signal line is not interrupted along the way, e.g. that all trans-
mission cells have the correct rotation. An example can be seen in
figure 38. This mode makes use of a pathfinding algorithm. The A*
pathfinder we employed is part of a 3D version of the PathFinding.js
library5 and was modified to allow using cells multiple times for per-
pendicular paths. If beneficial, the pathfinder will cross existing lines.
Cells that cannot be used for transmitting another signal, such as cells
that already implement a signal crossing, are simply bypassed com-
pletely.

Figure 38: (a) Users select the two blue cells, which are then (b)
automatically connected via the signals tool.

5.2.2 Furcated signal paths

Instead of connecting a single start and a single end cell, it is often de-
sirable to connect one signal line to a set of output cells in a 1 : n link.
To achieve such behavior, the signal has to be forked n− 1 times along

5 https://github.com/schteppe/PathFinding3D.js



5.2 manual signal and logic design 39

the way (cf. figure 39). Similarly, n : 1 connections, where multiple in-
put cells can activate one output are sometimes desired. Assuming an
implicit OR, this can be achieved by having two or more cells activate
the same input side of one cell, functioning as an inverse bifurca-
tion. Other ways to interpret n : 1 connections, such as an implicit
AND, or a voting mechanism, are instead implemented through ex-
plicit boolean computation. In this case, the tools that assist the user
by synthesizing logic should be used.

Figure 39: Users want to connect the blue cell on the left to all blue cells on
the right, so that the right ones are all activated at nearly the same time. It

requires less cells to do so when furcations happen close to the larger set of
cells, i.e. close to the right end of the signal paths.

To facilitate such furcations, we want to improve the pathfinder of
the signals mode of the system to be able to create furcations that
minimize the number of necessary cells automatically. A contrived
algorithm to do so is depicted in section 6.1.

5.2.3 Advanced brushes for creating logic: Circuit blocks

Expert users can create logic functions by placing the proper cells by
hand, but this process is slow and thus not well suited for complex
logic. Our system supports users to design logic quickly. To achieve
this, it offers a range of options to input logical functions, i.e. in the
form of logic functions, as truth tables on cell level, and as logic gate-
ways.



40 software

Users with a background in digital circuits might prefer designing
logic by placing basic logic building blocks such as logic gateways or
multiplexers, similar to the workflow in a boolean logic editor, such
as LogicFriday6. Our editor offers this mode of operation by provid-
ing special brushes, that when used with the add mode of the editor,
place predefined groups of logic cells at once. These specialized cell
arrangements perform the desired boolean logic using the rod-logic
computation paradigm. The editor already offers brushes for each of
the four basic two-input gates and a 4-to-1 multiplexer (cf. figure 40a).
Figure 41 shows the signal flow for the 2 input AND gate.

Figure 40: Each of these gates has two inputs coming from the top and an
evaluation line coming from the left. The output of the computation is

located at the (top) right.

The NOR and the AND gates share great similarity, just like the OR
and NAND gates. The only difference in the similar arrangements is
that both inputs either block or unblock a signal line. OR and NAND
gate are more complex, as this cell arrangement performs two com-
putational steps: First the result of NOR or AND respectively is cal-
culated, and this result is then negated. Why these exact cell arrange-
ments were used to build the basic logic gates will be clarified in
section 5.3.1.

6 http://sontrak.com/



5.2 manual signal and logic design 41

Figure 41: (a) Users can place this AND gate directly. (b) Switching to the
compute mode charges all cells. (c) Users activate the first input. The second

gate cell still blocks the evaluation signal. (d) Users activate the second
input. (e) Users trigger the evaluation line, which reaches the end, since
both inputs of the AND gate were activated. (f) Charging the cells also

resets the state of the gate cells.

5.2.4 Undo/Redo

A single operation within a voxel editor can fill the entire grid space
with voxels, replacing all previously set voxels. Such an operation
would therefore effectively destroy any existing model. This makes
the undo functionality of such an editor a very important feature, be-
sides the gain in efficiency that is to be expected. Undo and redo are
implemented on a cell level, but they operate on the more abstract
user interaction level. This is achieved through implicit grouping of
cell changes, based on a timestamp added to every operation at the
time of execution. Whenever an undo/redo operation occurs, the sys-
tem checks whether the following stack item has been created within
a marginally small time frame around the previous one. The length
of this time frame has been chosen shorter than the time that passes
between a mouse double-click at 100ms. This way, operations occur-
ing from two separate user interactions will not be grouped together.
All batch processes however, e.g. when a group of cells is created for
synthesizing a logic function, are treated as one operation. This pro-
cess works, since the processing time necessary to create, delete or
edit cells is near constant and well below 100ms. Figure 42 shows the
message sequences of adding a cell and the undo operation involving
the undo/redo stacks.

The implemented version of this functionality is very lightweight,
as only the previous state of the actually altered data objects are



42 software

Figure 42: Message sequence chart displaying undo and one previous
operation.

stored per step, instead of for example the whole system state. In
addition, actual logic cell data is only stored when cells are changed
or deleted, the system otherwise only adds empty cell data to the
stack. Since the redo stack is purged during user operations, and a
stored object is always either in the undo or the redo stack, the com-
bined size of undo and redo stack has an upper bound. The bound is
defined by the higher number of currently existing cell objects, either
before or after the last user interaction. This means that in the worst
case, the undo/redo functionality doubles the number of cell objects
that have to be stored in total.

5.3 synthesizing logic

An even more advanced way to generate cells that implement logic
is available if the desired logic function is known. The user can enter
this function, which is then minimized internally and a cell pattern
that executes this specific logic function is synthesized automatically.
To do so, the function is first minimized by the Berkeley Espresso Min-
imizer7. The resulting function is then parsed within the editor and
split up into parts that can be directly converted to compositions of
our logic cells.

As logic minimization is an extremely complex computational prob-
lem, we decided not to execute it in our javascript environment. In-
stead, we employ a very high-performance C implementation, pro-

7 https://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm



5.3 synthesizing logic 43

vided by PyEDA8, a Python library for electric design automation.
In our system, PyEDA is running on a RESTful Python server. That
means that it only provides stateless operations, which are accessible
in their entirety over a descriptive URI. In actual use, our editor en-
codes the logic function that should be minimized as a parameter in
a URI for the Python server and then sends this request via the HTTP
GET protocol to the server. PyEDA then parses the received logic
function internally. This means, that as long as the Python server is
running, the user can input specific functions, supported by PyEDA,
that have a more succinct representation than the general form, in-
cluding for example the implication function. The parsed function is
then minimized using the Berkeley Espresso Minimizer and the JSON
encoded result is returned to the editor to answer the initial GET
request. The Berkeley Espresso Minimizer uses heuristic problems to
find near optimal solutions to the NP-complete problem of logic min-
imization. It devides the input variables into subsets and finds locally
optimal solutions, which are then merged to a globally near optimal
solution.

If the logic minimization server is currently not available, i.e. when
the HTTP GET request timed out or returned an error state, the editor
instead continues working with the original function without mini-
mizing it. Either way, the function is then parsed to identify the liter-
als (i.e. the variables of the function) and is split up into terms. Using
these terms and literals, the cell arrangements that fulfill the desired
logic function can be generated. The understand the specifics of these
cell arrangements, we first have to explain how combinational logic
using rod logic concepts on a cell grid works.

5.3.1 Cell based computation using rod logic concepts

The basics of rod logic are described in the related work chapter
in section 3.5. Calculation within rod logic happens between inter-
locking rods, which are either free to move or have their movement
blocked by another rod. We propose a system in which a rod is re-
placed by a line of cells. Signal paths can cross, and the intersections
can be outfitted with probes and blocking knobs. The end of one such
line of cells is therefore an AND array of all the intersections along
its path. Only if all intersections are unblocked, the signal will reach
the end of the line. OR functionality can be achieved by forking a
signal and having the two lines run in parallel. The final output can
then be activated if any of the duplicated signals reaches its desti-
nation. Combining these two methods can implement more sophisti-
cated functionality, such as voters or a XOR-gate with three inputs.
In fact, all combinational logic functions (or their negated forms) can

8 https://pyeda.readthedocs.io/en/latest/index.html



44 software

be realized in such a fashion in one computation step. Furthermore,
multiple computation steps can be chained, in which the previously
computed outs can be used as inputs for the following steps.

Since OR functionality can be run in parallel and AND functionality
most easily runs along a line, a disjunctive normal form (DNF) can
be arranged in a very compact pattern. An array of disjunctions is
run in parallel, while all inputs intersect these lines perpendicular
to them. In other words, the editor uses the terms of the function to
construct a compact disjunction of minterm conjunctions. A minterm
is a minimal conjunction of the input literals that returns true.

This arrangement can be seen in figure 43. Depending on the con-
figuration of the gate cells at the signal intersections, all functions of
the form F = (±A & ± B & ± C) | (±A & ± B & ± C) can be
calculated with this arrangement of cells.

Figure 43: All of the horizontal input lines have to have the right states to
block or unblock each of the activation lines

Since the OR lines should run in parallel, they are activated by the
same signal which is bifurcated along the path, as shown in figure
44a. Instead of a physical consolidation of the OR signals that run
in parallel, it is also possible to consolidate them using cells with
a specific arrangement, similar to that of the original computation.
To do so, the signal that activated the OR evaluation lines is used
again to evaluate all of the parallel OR lines. The signal is furcated
along the path once more (cf. 44b) in a way that this furcated path
would block the original path later (cf. 44c). This blocking signal can



5.3 synthesizing logic 45

however be blocked and thus stopped by either of the OR signal lines.
This method scales gracefully with large numbers of OR lines that run
in parallel, as it adds a fixed number of cells to the total length and
width in cells of the computation area. The physical OR consolidation
would instead add log2 n cells with n = number o f OR lines to the
width of the area.

Figure 44: A logical OR can replace the physical version. It reuses the
evaluation line, that was originally used to (a) trigger the parallel OR lines
themselves. (b) It is forked a second time, and as a result might (c) block its

own signal path depending on the result of the logic function.

Figure 44 displays the function F0 = (¬A & ¬B & C) | (¬A & B & C).
In it, the evaluation line was triggered, but it blocked itself, since no
input was activated, which does not fulfill the function. Thus, the out-
put is 0. It is notable that in this version, there are no perpendicular
cells in between the two OR lines. The editor currently assumes, that
the rods used for blocking/unblocking the signals can span any num-
ber of consecutive cells, which only holds true in theory. In practice,
at some point, the blocking cell that moves the blocking rod will not
be able to overcome the friction caused by the mounds around the
very long blocking rod anymore.

5.3.2 Form and shape of logic cell arrangements

The form a logic function is presented in can greatly affects its per-
ceived complexity. As our logic synthesis algorithm is based on the
terms of the function, this can also affect the complexity of the cell
arrangements that are created. We employ a second custom optimiza-



46 software

tion step to avoid using unfavorable representations. Consider the
function based on pairs of inputs, which returns true if at least one
of the inputs of each pair of inputs is set to true (also known as the
Achilles Heel function). The DNF of this function results in figure 45a
and the notation in logic terms would be equally large.

Figure 45: A logical OR can replace the physical version. It reuses the
evaluation line, that was originally used to trigger the parallel OR lines

themselves.

Trivially, DNF = ¬(¬DNF) holds true. We make use of this fact
by negating the DNF before minimization, which results in the con-
junctive normal form (KNF) of the function. The minimizer is set to
bring the input function back into the DNF, and we negate the mini-
mized result again afterwards within the cell arrangement. The final
cell pattern can be seen in figure 45b. Note that the end of evaluation
line in figure 45b does not have a bifurcation step that could result in
self-blocking. Removing this part is effectively negating the result of
the computation. Also note the cells within the computation that do
not block or unblock a signal. These cells just cross the perpendicular
signal lines, as these inputs should have no effect on these minterms
of the function, since this input literal is not part of that minterm.

To utilize this method of negating the function twice, we send both
versions to the minimizer and compare afterwards which method pro-
duces the result that requires less cells to implement. Since the HTTP
GET request to the python server that handles minimization is an
asynchronous call, we use the callback of the request for synchroniza-
tion. In detail, the second request to the minimizer is sent within the
callback of the first one if it returned a valid result. This way we can
avoid any network synchronization issues.



5.3 synthesizing logic 47

The length and width of a computation pattern might still be too
big for the current use case even after all the available minimization
steps have been applied. For simple prototypes, such as those that
have been created for this thesis, this has not been the case though. A
function to handle this potential issue thus has not been implemented
into the editor yet. We plan to add the functionality to change the
shape of the computation cell arrangement while keeping the internal
logic intact in following versions of the editor. To do so, the layer
of cells that was created as a 2D surface could be folded up like a
sheet of paper by 180° along any of its edges. The total number of
cells however would increase, since additional cells would have to be
placed at the edges to redirect the signal along the third dimension.
The process could then be repeated until the desired dimensions are
met.

5.3.3 Logic synthesis using truth tables

In case the actual logic function is unknown, but the user is aware
which cells should be activated depending on which input cells are
active (in other words, the logic truth table is known), the system can
synthesize the function through this knowledge as well.

To make use of this method, the user selects all input and output
cells and their desired states, i.e. whether they have to be triggered
or not triggered for the function to return true. After inputting all
necessary combinations, the logic cell pattern implementing the truth
table can by minimized and synthesized automatically as before (cf.
figure 46).

5.3.4 Generating geometry for 3D printing

Our editor uses the OpenSCAD scripting language for rendering the
finished prototypes to export a 3D printable STL file. OpenSCAD9 is
a script based modeling tool for the creation of solit 3D models. It
is an easy to use open source tool and thus offers a broad range of
community created extensions. We used for example an extension for
creating bezier-curves10 within the program. Since it can be run from
the command line and the input files are text based, integration into
an existing workflow is easy. The script can be started through our
editor automatically, outputting the final STL file directly.

Though the programming capabilities of OpenSCAD are limited, it
is still a great tool for the creation of objects with a large number of

9 http://www.openscad.org/
10 https://github.com/chadkirby/BezierScad/



48 software

Figure 46: (a) The violet and pink cells have been marked as input cells. To
fulfill the function, the pink cells have to be triggered, but the violet ones

not. The yellow cell is an output cell. The user has selected the first
minterm of the function here. (b) The user selects the second minterm by

marking the appropriate cells. (c) The corresponding logic has been
generated.

parameters describing them. Our design of a bistable spring is fully
parametrized. That way all parts of the spring adapt automatically
to changes of any other part. For example changing the thickness of
the spring moves all the spring members, to both make sure that they
still fit together as expected and also that the distance between them
stays the same, so that the parts do not stick together when they are
3D printed (cf. figure 47). With this setup, testing parameters is not a
design challenge, but merely a printing task.

The internal export process for objects created with our editor is
shown in figure 48. The cell configuration details are exported to a
text file containing the position and other necessary information (e.g.
rotation, cell type, outputs, scaling, ...) to build the metamaterial cells
with integrated logic. The specifics how the cells themselves are de-
signed are contained in separate OpenSCAD modules and a config-



5.3 synthesizing logic 49

Figure 47: (a) shows a spring with a minimum material thickness of 0,1mm
and (b) was rendered with a minimum material thickness of 0,3mm set.

The script adapts the geometry automatically to avoid overlapping parts or
unwanted translations.

uration file. The configuration file contains different sets of configu-
rations, which can be chosen and applied on the fly. This allows for
example to have cells of different sizes (four grid voxels large instead
of one) or those that have a particularly long stroke or a high spring
constant.

Figure 48: To export STL files, the editor handles the user interaction, i.e.
request the output file name and path from the user in a standard

Windows FileSaveDialog, then prepares and executes the rendering script.

The configuration file fulfills a peculiar role in the rendering pro-
cess. Unlike most OpenSCAD configuration files, it does not simply
store a set of variables that can be used from other files. It instead



50 software

stores multiple sets of variables for different configurations. It offers
functions instead of variables to provide the stored data. Files de-
pending on the data don’t access variables directly, but instead call a
function which takes the requested configuration as a parameter. The
function then supplies the appropriate data value. It therefore acts as
a static server.

5.4 simulating logic circuits regarding timing assump-
tions

The objects created with our system are designed to be able to com-
pute combinational logic, which is time independent. Verifying this
kind of logic by itself could easily be executed by a global software
component that computes the logic and displays the result. There are
however a number of reasons why such a solution is not a viable
option.

• It is for example possible to build logic cell arrangements, where
the results of some parts of the computation change how the
computation of other parts work. There, not only which input
was set but also the order in which they are activated influ-
ences the outcome of the computation. Such case-by-case anal-
ysis would complicate the functionality of, and user interaction
with the simulation component.

• A desirable functionality of the system is that the user can ob-
serve the actions within the material, instead of just receiving
the final output, especially when parallel execution is involved.
Figure 49 shows a simulation of signals traversing the material
in parallel. Also interacting with the system during simulation
might be favored for testing purposes.

• Another reason is, that the time it takes to trigger a cell and snap
its bistable spring varies slightly from cell to cell (due to fabrica-
tion inaccuracies) and it can also vary depending on other fac-
tors, such as cell temperature or possible material fatigue over
time. For two mirrored signal lines that run in parallel and have
the same length it is still mathematically impossible that they
arrive at exactly the same time at the same destination. Since
computation in our system is based on impulses, a synchronic-
ity assumption should not be made. Following this reasoning,
computation should be cell based, as it also is in the real world
objects.

One way to achieve this would be to emulate the cells as a cellular
automaton. A cellular automaton is however a clocked system, which
does not fit our paradigm well. Furthermore, as in a cellular automa-



5.4 simulating logic circuits regarding timing assumptions 51

Figure 49: The cells shining yellow are currently active in this simulation.
Multiple bifurcations have triggered parallel signal lines. Simulating

parallel execution helps identifying and testing race conditions in
prototypes.

ton all cells are evaluated simultaneously in every step, in almost all
cases this evaluation would have no result, since our cells only fire
once, and are silent during the rest of their lifetime. Evaluating all
cells at once is unnecessary since signals only cause local changes
and it does not scale well.

An option that scales better would be to utilize a FIFO queue of
cells that are to be triggered. However, the order in which cells are
triggered would be implementation dependent and fixed. When two
mirror signal lines running in parallel are simulated, the one whose
first cell was added to the queue first would always also arrive at the
end first. This ordering is demonstrated in figure 50.

We implemented a solution similar to that of the FIFO queue. A
queue is implicitly given through the order of function calls. Every
cell stores a delay inherent to that cell, describing how long this cell is
active before it triggers following cells. This delay varies per cell and
also per activation of the cell. It can vary up to twice the original delay.
During the delay, other cells can be triggered and computed by the
system. In addition, the delay also helps the user to follow the process
since a computation without delay would be too fast to understand
or even see. Regarding the setup in figure 50, both signal lines could
arrive first, as would be the case in the physical world. The cells are
functionally triggering each other, though they are not directly com-



52 software

Figure 50: Triggering cells using a FIFO queue results in a fixed ordering
depending on the implementation. Here, the left path will always arrive

first.

municating with each other, to avoid having to store neighborhood
information within each cell.

5.5 modular system design

The software we built is an extension to existing software and possi-
ble further extensions are conceivable. To support this possibility, it
offers modularity in different parts of the system. The actual design of
cells of our system for example can be changed easily by adapting the
OpenSCAD script files used for rendering the printable STL files. The
script is divided up into different parts, allowing exchanging some of
them without compromising the other. A separate script file calls all
modules and arranges the parts created by them to form the final
cell design. All modules are customized by a shared set of param-
eters, which is stored in another separate file. Providing a different
file for the spring and frame creation could for example produce the
results shown in figure 51. The chosen spring design however offered



5.6 underlying model 53

the best performance while providing useful options to adapt it to
different use cases, such as executing a longer stroke.

Figure 51: A customized OpenSCAD script creating the frame and three
script versions for creating a bistable springs were used to render these 3D

designs. A modular system design allows exchanging them quickly.

Parts of the editor are also designed in a modular fashion. For ex-
ample adding new cell types or new cell arrangements for the user to
employ in his objects can be achieved by simply adding new brushes
to the system. Some useful predefined cell patterns are already imple-
mented as brushes that can be added to the grid with one click, for
example a 2-bit 4-to-1 multiplexer. A 3-bit 8-to-1 multiplexer could be
added in the same fashion with little effort. The modes of the editor
itself are internally treated as modules. New modes can be added effi-
ciently, as long as they provide an updateVoxel method, that complies
with the expected parameters for this class of functions.

5.6 underlying model

For a deeper understanding and analytic possibilities in future work,
we present two models that capture the states and behaviors of our
system well and how they could be used not only for analysis but also
for operational use in the software system. Some modeling options
have already been mentioned in section 3.6, and here we will discuss
the application of finite state machines and petri-nets to our system
in detail, starting with a FSM model for our most basic cell (cf. figure
52).

5.6.1 Finite state machines

The transmission cell as a FSM is an automaton with two states. If it
is charged, it can be triggered by an impulse to output an impulse of
its own. If it is not charged, a recharge action from the user brings it
back to its charged state, ready to be used once more. In this model,
every cell is represented as one simple FSM.



54 software

Figure 52: (a) The state diagram for a simple transmitting cell illustrates the
two states of the cell/spring. (b) Shows the corresponding state transition

table.

Such an automaton is then treated as a sub-FSM of a hierarchi-
cal setup, where multiple FSM’s communicate via impulse messages.
The amount of states within the composite FSM is large, as it is fully
defined by the combination of states of all sub-FSM’s. The number of
states is the multiplication of the number of states of all sub-FSM’s.
However, not all of these states are useful or even reachable, leaving
room for optimization. Using this model, one can furthermore eas-
ily abstract from the internals of the automata and only regard the
automaton as a whole. Following this concept, even a setup of multi-
ple blocking and gate cells that function as a logic gateway could be
viewed as one unit, in the form of a hierarchical FSM (cf. 53). This
results in a scalable interface where both a broad overview and a
detailed view on the internals are available as desired.

Figure 53: (a) Shows the internal FSM’s of the AND-Gate automaton, but
already abstracts from their internal states. (b) Takes the abstraction further,

hiding unnecessary details from the user.

To create a FSM for a gate cell based on the transmitting cell model,
one would replicate the existing states. The first set of these state
would function as before, and the second set would ignore the im-
pulse, thus blocking the signal, instead of emitting an impulse itself.
One would however have to differentiate between the impulse that



5.6 underlying model 55

triggers the cell and the impulse that configures the blocking state,
by naming them differently.

To allow a nonrestrictive execution of the model however, these im-
pulses should only be distinguished by the direction they are coming
from. Yet traditional FSM’s do not discriminate between positions of
parts of the model. One would have to extend the modeling envi-
ronment through the notion of a grid, e.g. by constraining the state
diagrams to only utilize arrows with fixed lengths of multiples of
the cell size, as well as the constraint to only use 90° turns. Given
this grid layout and some additional FSM properties, it would allow
generating and simulating digital mechanical metamaterials directly
from within the model. The other necessary properties are the greedi-
ness property of the automaton and simultaneous reactions.

The greediness property describes the convention that in every exe-
cution step, the maximum number of possible transitions and static
reactions always have to be taken. This means that all FSM’s that can
undergo a transition have to do so. The order in which transitions are
processed should be determined by the method presented in section
5.4.

The property of simultaneous reactions closely relates to the greed-
iness property. It assumes that the answer to any external stimulus
happens already in the same step the input arrived. Whenever the
state of the model changes, it has to be evaluated whether new transi-
tions are possible, and those transitions in turn have to be used. This
process then has to be repeated until no more transitions can occur.
Both properties together denote for example that when a user trig-
gers a cell, the resulting signal may traverse the entirety of the object
and provide a result instantly, i.e. before the user has the option to
execute another input, as is the case in the real world.

5.6.2 Petri-nets

It is also possible to model the parts and the behaviour of our system
using petri-nets. Instead of modeling every cell as one FSM, here each
transition describes one cell. Figure 54 depicts the same logic as the
composite FSM in figure 53. Colored tokens are necessary to imple-
ment our system in a petri-net. Charging the system in the context
of the petri-net would mean filling all of the red places in 54 with
one token. The representation of the logic state of the system is very
succinct through the usage of the blue places in 54. Each pair of blue
places denotes one state bit in the system, that is either set to true
or false. The logic state of the system is encoded purely by the blue
places, so hiding all other details gives a good overview of the logic
system state.



56 software

To make sure, that the order of execution of transitions is the same
as triggering cells in our editor, we have to utilize different concepts
of timed petri-nets in our models. Transitions can have a "delay of
transition firing" property, which can be used to model the triggering
delay of the cells in our editor. The tokens of the petri-net can also
be extended with the "token age" property. This can be applied to the
green impulse tokens in figure 54, since these tokens are not allowed
to linger in a place longer than the maximum activation time of a
cell, thus forcing the following transitions to fire. Petri-nets offer op-
tions to abstract from complexity, such as a hierarchical architecture,
similar to FSM’s. The tool support for colored petri-nets is however
limited to tools like CPN Tools11, which offers hierarchical colored
petri-nets, but not the necessary timing functionality to fully model
our system.

Figure 54: This petri-net shows an AND-gate. Transitions model cells, so
they can only fire if they have a red Charged token. Blue logic tokens are
not consumed when evaluated, as the physical state remains unchanged

and other transitions may evaluate them again.

5.7 rendering

To render metamaterial and logic cells efficiently, the editor uses cus-
tom shaders that follow the OpenGL 2.0 specification. The utilized
vertex and fragment shaders are written in the OpenGL Shading Lan-
guage (GLSL). The editor from [7] is able to render single colored vox-
els. We built on this rendering architecture and adapted the shader
code to be able to also render voxels with custom textures and tex-

11 http://cpntools.org/



5.7 rendering 57

ture rotations. Based on the position data of the vertices, the shader
reflects and rotates the texture appropriately for each of the two poly-
gons per face of the voxel. The custom rotations are applied after-
wards, which allows reusing the same textures independent of cell
rotation. To increase performance, the rendering process terminates
after the first texture is drawn per pixel. The texture is manipulated
during rendering through state dependent color changes as visual-
ized in figure 55) and shadowing, which is an adapted version of the
original shadowing functionality.

Using one mesh for all cells avoids redundancies in the allocation
of memory, since for example all necessary textures only have to be
loaded and stored once. Any DirectX-10 capable GPU offers at least
16 texture units and thus allows storing and using up to 16 different
textures per mesh. Modern GPUs offer a higher number of texture
units, but to ensure compatibility we limit the number of textures
used per mesh and thus per geometry buffer to 16. As shown before
in figure 36, the geometry buffers prepare the voxel geometry data
for the graphics card and provide the shader code that is used by
the GPU to render the cells. We employed a total of three geometry
buffers, each rendering a group of cell types, where the cell types
within the groups share similar sets of textures. The animation of the
cell colors during the simulation is not realized through additional
textures with adjusted colors. Instead, the colors of the textures are
altered ad hoc during rendering. For all pixels of a cell that have black
color (as most symbols on the used textures do), the color vector is
changed depending on the state of the cell. In conclusion, charged
cells are rendered blue, active ones yellow, and uncharged cells use
the texture base color, i.e. black (cf. figure 55).

Figure 55: (a) The black parts of the voxel textures are rendered blue to
signify that the cell is charged. (b) Active cells are rendered yellow instead.

(c) Uncharged cells are rendered without color changes.





6
C O N C L U S I O N A N D F U T U R E W O R K

We built an interactive editor that enables the user to create metama-
terials that integrate digital computation. The editor supports design-
ing with specialized metamaterial cells that transmit signals and com-
pute combinational logic purely on a mechanical level without added
electronics. The cells contain an efficient customizable bistable spring
that can trigger springs of adjacent cells while it changes from its
tense to relaxed state itself, implementing signal transmission, redi-
rection and bifurcation. It support truth tables and logic functions
for the synthesis of these logic cells and also offers the option to
create mechanical circuits by placing basic building blocks such as
logic gateways. Pathfinding capabilities facilitate interconnecting this
circuitry, which can furthermore be simulated within the editing en-
vironment. The logic cells can be integrated with traditional meta-
materials and exported to a printable STL file that does not require
assembly after printing. We created a recharging mechanism that sim-
plifies tensing the bistable springs within the printed logic cells.

6.1 automatic furcation generation for 1 :n signal con-
nections

We want to enable users to create the necessary signal lines to connect
one input with an arbitrary number of outputs or vice versa quickly,
through automated generation of furcating signal lines, in the next
version of the editor. We contrived a process to find efficient furcated
paths for 1 : n or n : 1 connections using a heuristic pathfinding al-
gorithm, such as the A* pathfinder used in the editor. First, find an
initial path as usual from one start to end cell. Lower the weight used
in the heuristics of the pathfinding algorithm of all cells that belong
to this path (for the duration of this process). A lower weight means
that is is ’less expensive’ to use these cells. This rewards following
the existing path in following iterations of the pathfinding algorithm,
thus ensuring furcations happen close to where they are needed. The
pathfinder will always prefer using the cells with lower cost/weight
and only leave the existing path, thus forking the signal, when nec-
essary, right before the target cell. Continue using the pathfinding
algorithm for cells in close proximity to the previously chosen cell.
In all further iterations, lower the weight of all newly created cells as

59



60 conclusion and future work

before, but declare cells with their maximum number of furcations as
blocked, i.e. set their weight to infinity.

6.2 suspension for logic cells

In their current design, the logic cells that transmit signals within
our system have a stiff frame. The future version of our system will
feature cells, that are suspended within their vicinity, to allow them
to compress or shear similar to other types of metamaterial (cf. fig-
ure 56). Such a suspension will enhance the integration with existing
metamaterial mechanisms such as [7]. The logic cells will then not
only connect to and configure e.g. shearing cells, but also act like
shearing cells themselves.

Figure 56: The suspension of the next version of our cell frames allows the
cells to shear and it enables the system to place cells around curved

surfaces.



6.3 memory cells and user powered system clock 61

They will then also be able to lock themselves in place, prohibiting
the shearing motion, depending on their own state, i.e. whether their
spring was triggered or not. This version will feature cells that can
trigger adjacent cells at an angle, and we want the cells to dynamically
fixate this specific angle at their time of activation.

6.3 memory cells and user powered system clock

The logic cells of our system are designed to implement combina-
tional logic, which is a stateless system. The work [11] described the
idea of memory cells, that can store bits of information beyond one
cycle of the system.

Figure 57: Latch rods in [11] move in conjunction with output rods, but are
then locked in place by gate knobs on a holding rod. The previously

calculated result of the system can be read through the position of the latch
rod in following calculations.

We want to implement a similar mechanism as shown in figure
57 for the next version of our system. Using the possibility to store
bits of data using memory cells over multiple iterations of using the
system, we want to implement a mechanical clocking system that is
powered by the user itself. Such a system could make use of the exist-
ing recharging mechanisms, powering it in the first half of a clocking
motion, e.g. pulling a shaft. The second half of the clocking motion,
e.g. pushing the shaft back to the original position, could be used to
trigger all necessary evaluation signal lines.





B I B L I O G R A P H Y

[1] Alur, R., Kannan, S., and Yannakakis, M. Communicating Hi-
erarchical State Machines. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 1999, pp. 169–178.

[2] Bächer, M., Coros, S., and Thomaszewski, B. Linkedit: Inter-
active linkage editing using symbolic kinematics. ACM Trans.
Graph. 34, 4 (July 2015), 99:1–99:8.

[3] Bächer, M., Whiting, E., Bickel, B., and Sorkine-Hornung,
O. Spin-it: Optimizing moment of inertia for spinnable objects.
ACM Trans. Graph. 33, 4 (July 2014), 96:1–96:10.

[4] Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H.,
Gross, M., and Matusik, W. Design and fabrication of materials
with desired deformation behavior. ACM Trans. Graph. 29, 4 (July
2010), 63:1–63:10.

[5] Calì, J., Calian, D. A., Amati, C., Kleinberger, R., Steed, A.,
Kautz, J., and Weyrich, T. 3d-printing of non-assembly, articu-
lated models. ACM Trans. Graph. 31, 6 (Nov. 2012), 130:1–130:8.

[6] Elipe, J. C. Á., and Lantada, A. D. Comparative study of aux-
etic geometrics by means of computer-aided design and engi-
neering. Smart Materials and Structures 21, 10 (October 2012),
105004.

[7] Ion, A., Frohnhofen, J., Wall, L., Kovacs, R., Alistar, M.,
Lindsay, J., Lopes, P., Chen, H.-T., and Baudisch, P. Metama-
terial mechanisms. In Proceedings of UIST’16 (2016).

[8] Jensen, K. Coloured Petri Nets: Basic Concepts, Analysis Methods
and Practical Use, Vol. 2. Springer-Verlag, London, UK, UK, 1995.

[9] Katsumoto, Y., Tokuhisa, S., and Inakage, M. Ninja track: De-
sign of electronic toy variable in shape and flexibility. In Proceed-
ings of the 7th International Conference on Tangible, Embedded and
Embodied Interaction (New York, NY, USA, 2013), TEI ’13, ACM,
pp. 17–24.

[10] Lewis, J. A. Voxel8. http://www.voxel8.com/. [Online; accessed
11-October-2016].

[11] Merkle, R. C. Two types of mechanical reversible logic. Nan-
otechnology 4, 2 (1993), 114.

63

http://www.voxel8.com/


64 bibliography

[12] Mueller, S., Mohr, T., Guenther, K., Frohnhofen, J., and

Baudisch, P. fabrickation: fast 3d printing of functional objects
by integrating construction kit building blocks. In Proceedings
of the 32nd annual ACM conference on Human factors in computing
systems (2014), ACM, pp. 3827–3834.

[13] Mullin, T., Deschanel, S., Bertoldi, K., and Boyce, M. C. Pat-
tern transformation triggered by deformation. Phys. Rev. Lett. 99
(Aug 2007), 084301.

[14] Nadkarni, N., Daraio, C., and Kochmann, D. M. Dynamics
of periodic mechanical structures containing bistable elastic ele-
ments: From elastic to solitary wave propagation. Phys. Rev. E 90
(Aug 2014), 023204.

[15] Panetta, J., Zhou, Q., Malomo, L., Pietroni, N., Cignoni, P.,
and Zorin, D. Elastic textures for additive fabrication. ACM
Trans. Graph. 34, 4 (July 2015), 135:1–135:12.

[16] Paulose, J., Meeussen, A. S., and Vitelli, V. Selective buckling
via states of self-stress in topological metamaterials. Proceedings
of the National Academy of Science 112 (June 2015), 7639–7644.

[17] Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung,
O. Make it stand: Balancing shapes for 3d fabrication. ACM
Trans. Graph. 32, 4 (July 2013), 81:1–81:10.

[18] Raney, J. R., Nadkarni, N., Daraio, C., Kochmann, D. M.,
Lewis, J. A., and Bertoldi, K. Stable propagation of mechan-
ical signals in soft media using stored elastic energy. Proceedings
of the National Academy of Sciences 113, 35 (2016), 9722–9727.

[19] Savage, V., Chang, C., and Hartmann, B. Sauron: Embedded
single-camera sensing of printed physical user interfaces. In Pro-
ceedings of the 26th Annual ACM Symposium on User Interface Soft-
ware and Technology (New York, NY, USA, 2013), UIST ’13, ACM,
pp. 447–456.

[20] Savage, V., Schmidt, R., Grossman, T., Fitzmaurice, G., and

Hartmann, B. A series of tubes: Adding interactivity to 3d
prints using internal pipes. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology (New York,
NY, USA, 2014), UIST ’14, ACM, pp. 3–12.

[21] Schiff, J. L. Cellular Automata: A Discrete View of the World (Wiley
Series in Discrete Mathematics & Optimization).

[22] Schumacher, C., Bickel, B., Rys, J., Marschner, S., Daraio,
C., and Gross, M. Microstructures to control elasticity in 3d
printing. ACM Trans. Graph. 34, 4 (July 2015), 136:1–136:13.



bibliography 65

[23] Vasilevitsky, T., and Zoran, A. Steel-sense: Integrating ma-
chine elements with sensors by additive manufacturing. In Pro-
ceedings of the 2016 CHI Conference on Human Factors in Computing
Systems (New York, NY, USA, 2016), CHI ’16, ACM, pp. 5731–
5742.

[24] Weichel, C., Lau, M., Kim, D., Villar, N., and Gellersen, H. W.
Mixfab: A mixed-reality environment for personal fabrication. In
Proceedings of the 32Nd Annual ACM Conference on Human Factors
in Computing Systems (New York, NY, USA, 2014), CHI ’14, ACM,
pp. 3855–3864.

[25] Willis, K., Brockmeyer, E., Hudson, S., and Poupyrev, I.
Printed optics: 3d printing of embedded optical elements for in-
teractive devices. In Proceedings of the 25th Annual ACM Sym-
posium on User Interface Software and Technology (New York, NY,
USA, 2012), UIST ’12, ACM, pp. 589–598.





D E C L A R AT I O N

I certify that the material contained in this thesis is my own work
and does not contain unreferenced or unacknowledged material. I
also warrant that the above statement applies to the implementation
of the project.

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Hilfsmittel verwen-
det habe. Ich erkläre hiermit weiterhin die Gültigkeit dieser Aussage
für die Implementierung des Projekts.

Potsdam, October 2016

Ludwig Wilhelm Wall


	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Digital mechanical metamaterials
	1.2 Computation in the mechanical domain
	1.3 Editor for metamaterials that integrate logic

	2 Walkthrough
	2.1 Building the logic for a combination lock
	2.2 Testing the logic and integration with the metamaterial door handle

	3 Related Work
	3.1 Personal fabrication
	3.2 Designing the inside of objects
	3.3 Mechanical metamaterials
	3.4 Mechanical signal transmission using bistable springs
	3.5 Rod logic
	3.6 Automata and petri-nets

	4 Hardware and Mechanics
	4.1 Computation using impulses
	4.1.1 Avoiding the necessity to use inverters
	4.1.2 Clockless computation

	4.2 Traversing the grid
	4.3 Recharging
	4.4 Operational amplifiers
	4.5 Physical background of mechanical signal transmission and energy storage
	4.5.1 Springs as energy storage
	4.5.2 Bistable spring design
	4.5.3 Spring parameterization


	5 Software
	5.1 Architecture
	5.2 Manual signal and logic design
	5.2.1 Drawing
	5.2.2 Furcated signal paths
	5.2.3 Advanced brushes for creating logic: Circuit blocks
	5.2.4 Undo/Redo

	5.3 Synthesizing logic
	5.3.1 Cell based computation using rod logic concepts
	5.3.2 Form and shape of logic cell arrangements
	5.3.3 Logic synthesis using truth tables
	5.3.4 Generating geometry for 3D printing

	5.4 Simulating logic circuits regarding timing assumptions
	5.5 Modular system design
	5.6 Underlying model
	5.6.1 Finite state machines
	5.6.2 Petri-nets

	5.7 Rendering

	6 Conclusion and Future Work
	6.1 Automatic furcation generation for 1:n signal connections
	6.2 Suspension for logic cells
	6.3 Memory cells and user powered system clock

	Bibliography
	Declaration

